Data Path Design

Contents

- Adder
- Bit adder circuits
- Ripple Carry Adder
- CLA Adder
- Multipliers and Shifter
- Partial-product generation
- Partial-product accumulation
- Final addition
- Barrel shifter

A Generic Digital Processor

Building Blocks for Digital Architectures

\square Arithmetic unit

- Bit sliced data path - adder, multiplier, shifter, comparator, etc.
-Memory
- RAM, ROM, buffers, shift registers
\square Control
- Finite state machine (PLA, random logic)
- Counters
-Interconnect
- Switches, arbiters, bus

Bit-Sliced Design

Tile identical processing elements

Bit Adder Circuits

Consider two binary digits A an B, binary sum is denoted by $A+B$ such that

A	B	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$$
\begin{aligned}
& \text { Sum }=A \oplus B \\
& \text { Carry }=A \cdot B
\end{aligned}
$$

Full-Adder

$$
\begin{aligned}
& \begin{aligned}
\text { sum_out } & =A \oplus B \oplus C \\
& =A B C+A \bar{B} \bar{C}+\bar{A} \bar{B} C+\bar{A} \bar{C} B
\end{aligned} \\
& \text { carry_out }=A B+A C+B C
\end{aligned}
$$

AOI Full-Adder Logic

Transistor-level schematic of the one-bit full-adder circuit

Full-Adder Circuits

\square Adding n-bit binary words

$$
\begin{array}{r}
a_{3} a_{2} a_{1} a_{0} \\
+b_{3} b_{2} b_{1} b_{0} \tag{12.3}\\
\hline c_{4} s_{3} s_{2} s_{1} s_{0}
\end{array}
$$

\square In the standard carry algorithm, each of the i th columns ($i=0,1,2,3$) operates according to the full-adder equation

$$
\begin{array}{r}
c_{i} \\
a_{i} \\
+\quad b_{i} \\
\hline c_{i+1} \quad s_{i}
\end{array}
$$

(a) NAND2 logic

(b) NOR-based network
\square Expressions for the network are

$$
\begin{aligned}
& s_{i}=a_{i} \oplus b_{i} \oplus c_{i} \\
& c_{i+1}=a_{i} \cdot b_{i}+c_{i} \cdot\left(a_{i} \oplus b_{i}\right)
\end{aligned}
$$

or

$$
\begin{equation*}
c_{i+1}=a_{i} b_{i}+c_{i} \cdot\left(a_{i}+b_{i}\right) \tag{12.6}
\end{equation*}
$$

Full-adder logic networks

(a) Gate-level logic

(b) HA-based design

Full-adder logic networks

Full-adder truth-table

\boldsymbol{A}	\boldsymbol{B}	$C_{\boldsymbol{i}}$	\boldsymbol{S}	$C_{\boldsymbol{o}}$	Carry status
0	0	0	0	0	delete
0	0	1	1	0	delete
0	1	0	1	0	propagate
0	1	1	0	1	propagate
1	0	0	1	0	propagate
1	0	1	0	1	propagate
1	1	0	0	1	generate
1	1	1	1	1	generate

Generate (G) = AB
Propagate $(P)=A \oplus B$

$$
\begin{aligned}
C_{o}(G, P) & =G+P C_{i} \\
S(G, P) & =P \oplus C_{i}
\end{aligned}
$$

Inversion Property

Minimize Critical Path by Reducing Inverting Stages

Exploit Inversion Property

Mirror Circuits

\square Mirror circuits are based on series-parallel logic gates, but are usually faster and have a more uniform layout
» Output 0 's imply that an nFET chain is conducting to ground
" Output 1's means that a pFET group provides support from the power supply

Figure 9.1 XOR function table

Mirror Circuits

- Based on series-parallel logic gates
- Usually faster, more uniform layout
- Same transistor topology for nFETs and pFETs

Evolution of carry-out circuit

A Better Structure: The Mirror Adder

24 transistors

Transmission-gate full-adder circuit

Complementary Pass-Transistor Logic

\square Complementary Pass-Transistor (CPL): an dual-rail tech. that is based on nFET logic equations

$$
\begin{align*}
& f=a \cdot b+\bar{a} \cdot a \tag{9.41}\\
& \Rightarrow a \cdot \bar{b}+\bar{a}=\bar{a}+\bar{b}=\overline{a \cdot b} \tag{9.42}
\end{align*}
$$

\square CPL has several 2-input gates that can be created by using the same transistor topology with different input sequences
" Less layout area
" However, threshold will be loss and the fact that an input variable may have to drive more than one FET terminal

(a) AND gate

(b) AND/NAND array

Figure 9.32 CPL AND/NAND circuit

(a) OR/NOR

(b) $\mathrm{XOR} / \mathrm{XNOR}$

Complementary Pass-Transistor Logic

\square Dual-rail complementary pass-transistor logic (CPL)

$$
\begin{aligned}
& a_{i} \oplus b_{i} \text { and } \overline{a_{i} \oplus b_{i}} \\
& s_{n}=\overline{\left(a_{i} \oplus b_{i}\right)} \cdot c_{i}+\left(a_{i} \oplus b_{i}\right) \cdot \overline{c_{i}} \\
& \overline{a_{i}} \cdot b_{i}+\overline{b_{i}} \cdot \overline{c_{i}}
\end{aligned}
$$

(a) 2-input array

(b) Sum circuit
$\overline{a_{i}} \cdot \overline{b_{i}}+b_{i} \cdot \overline{c_{i}}$
$b_{i} \cdot c_{i}+a_{i} \cdot \bar{b}_{i}$

(c) Carry circuit

Full Adder using Half Adders

Ripple Carry Adders

- A carry ripple adder chain : 16-bit binary adder

- Cascade-connection
- Fast carry-out response is essential
- the delay will increase significantly when the number of bit is increased

Ripple-Carry Adders

Figure 12.11 An n-bit adder

Figure 12.12 A 4-bit ripple-carry adder

Figure 12.13 Worst-case delay through the 4-bit ripple adder

Figure 12.14 4-ibt adder-subtractor circuit

Carry Look-Ahead Adder

Figure 12.15 Basis of the carry look-ahead algorithm

Figure 12.16 Logic network for 4-bit CLA carry bits

Figure 12.17 Sum calculation using the CLA network

Carry Look-Ahead Adders

(a) Series-parallel circuit

(b) Mirror equivalent

Figure 12.20 Static CLA mirror circuit

Figure 12.22 MODL carry circuit

Figure 12.21 Static mirror circuit for C_{2}

Carry Look-Ahead Adders

(a) C_{1} logic

(c) C_{3} logic

(b) C_{2} logic
(d) C_{4} logic

(a) Complementary

(b) Pseudo nMOS

(c) Dynamic

Figure 12.18 nFET logic arrays for the CLA terms
Figure 12.19 Possible uses of the nFET logic arrays in Figure 12.18

Manchester Carry Chains

a_{i}	b_{i}	p_{i}	g_{i}	k_{i}
0	0	0	0	1
0	1	1	0	0
1	0	1	0	0
1	1	0	1	0

Figure 12.23 Propagate, generate, and carry-kill values

Figure 12.24 Switching network for the carry-out equation

(a) Static circuit

(b) Dynamic circuit

Figure 12.25 Manchester circuit styles

Figure 12.26 Dynamic Manchester carry chain

Multipliers

Figure 12.39 Bit-level multiplier

Figure 12.40 Multiplication of two 4-bit words

Figure 12.41 Shift register for multiplication or division by a factor of 2

Binary Multiplication

Multipliers

Figure 12.42 Alternate view of multiplication process

Figure 12.43 Using a product register for multiplication

Partial product generation logic

Shift-right multiplication sequence

Figure 12.44 Shift-right multiplication sequence

Register based multiplier network

Figure 12.45 Register-based multiplier network

Partial Product Accumulation- Array Multipliers

Figure 12.46 An array multiplier

Figure 12.47 Modularized view of the multiplication sequence

Figure 12.48 Details for a 4×4 array multiplier

General Rotator

4-bit rotate-right network

Left-rotate switching array

8 x 4 Barrel Shifter

shift	$b_{0} b_{1} b_{2} b_{3}$
0	$a_{0} a_{1} a_{2} a_{3}$
1	$a_{1} a_{2} a_{3} a_{4}$
2	$a_{2} a_{3} a_{4} a_{5}$
3	$a_{3} a_{4} a_{5} a_{6}$
4	$a_{4} a_{5} a_{6} a_{7}$

FET Array Barrel Shifter

Thank You

