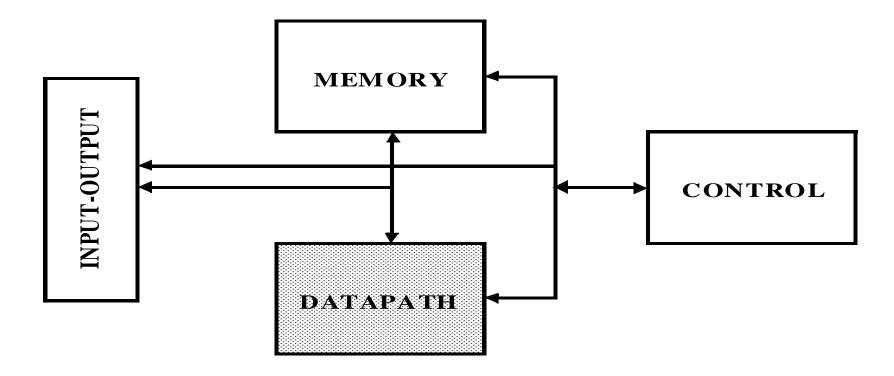
Data Path Design

Contents

Adder

- Bit adder circuits
- Ripple Carry Adder
- CLA Adder
- Multipliers and Shifter
 - Partial-product generation
 - Partial-product accumulation
 - Final addition
 - Barrel shifter

A Generic Digital Processor



Building Blocks for Digital Architectures

□Arithmetic unit

• Bit sliced data path – adder, multiplier, shifter, comparator, etc.

□Memory

• RAM, ROM, buffers, shift registers

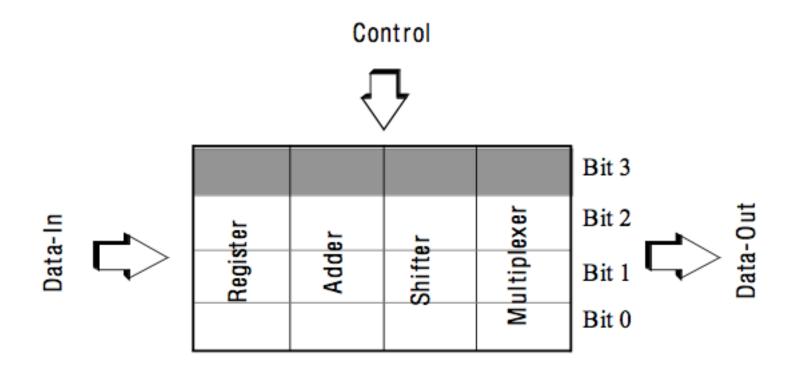
□Control

- Finite state machine (PLA, random logic)
- Counters

□Interconnect

• Switches, arbiters, bus

Bit-Sliced Design



Tile identical processing elements

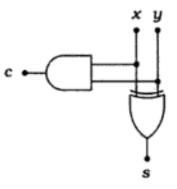
Bit Adder Circuits

□ Consider two binary digits A an B, binary sum is denoted by A+B such that

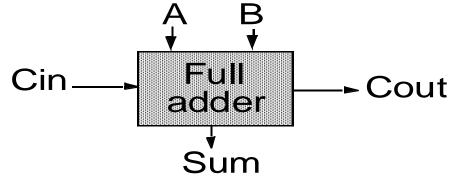
0 + 0 = 00 + 1 = 11 + 0 = 11 + 1 = 10Half adder В А Half Carry Adder Sum

A	В	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$$Sum = A \oplus B$$
$$Carry = A \cdot B$$

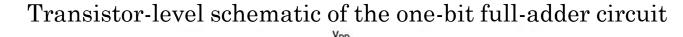


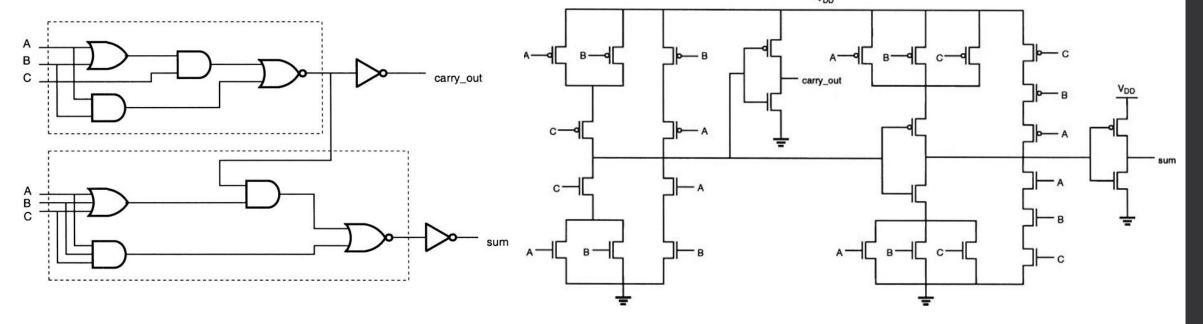
Full-Adder



sum_out = $A \oplus B \oplus C$ = $ABC + A\overline{B}\overline{C} + \overline{A}\overline{B}C + \overline{A}\overline{C}B$ carry_out=AB + AC + BC

AOI Full-Adder Logic





Full-Adder Circuits

Adding *n*-bit binary words

 $a_3 a_2 a_1 a_0$

 $+ b_3 b_2 b_1 b_0$ (12.3)

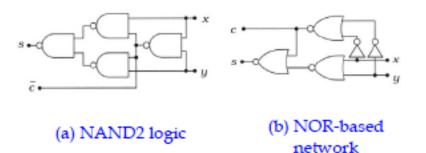
 $c_4 \ s_3 s_2 s_1 s_0$

In the standard carry algorithm, each of the *i*th columns (*i* = 0, 1, 2, 3) operates according to the full-adder equation

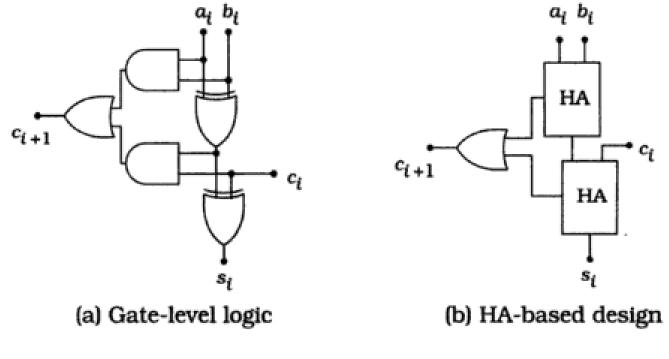
 $\begin{array}{c} c_i \\ a_i \\ + b_i \end{array} (12.4) \\ \hline c_{i+1} s_i \end{array}$

$$s_{i} = a_{i} \oplus b_{i} \oplus c_{i}$$

$$c_{i+1} = a_{i} \cdot b_{i} + c_{i} \cdot (a_{i} \oplus b_{i})$$
Of
$$c_{i+1} = a_{i}b_{i} + c_{i} \cdot (a_{i} + b_{i})$$
(12.5)
(12.6)



Full-adder logic networks



Full-adder logic networks

Full-adder truth-table

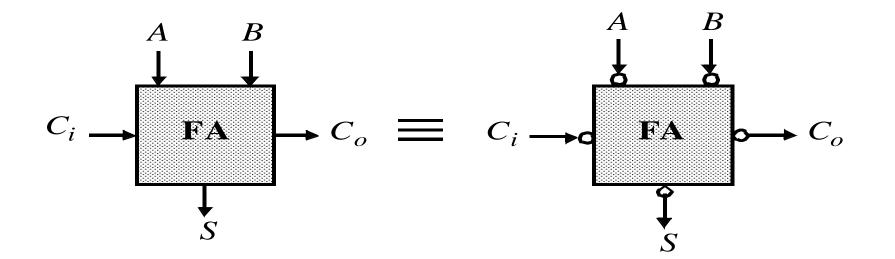
A	В	<i>C</i> _{<i>i</i>}	S	С,	Carry status
0	0	0	0	0	delete
0	0	1	1	0	delete
0	1	0	1	0	propagate
0	1	1	0	1	propagate
1	0	0	1	0	propagate
1	0	1	0	1	propagate
1	1	0	0	1	generate
1	1	1	1	1	generate

Generate (G) = AB

Propagate (P) = $A \oplus B$

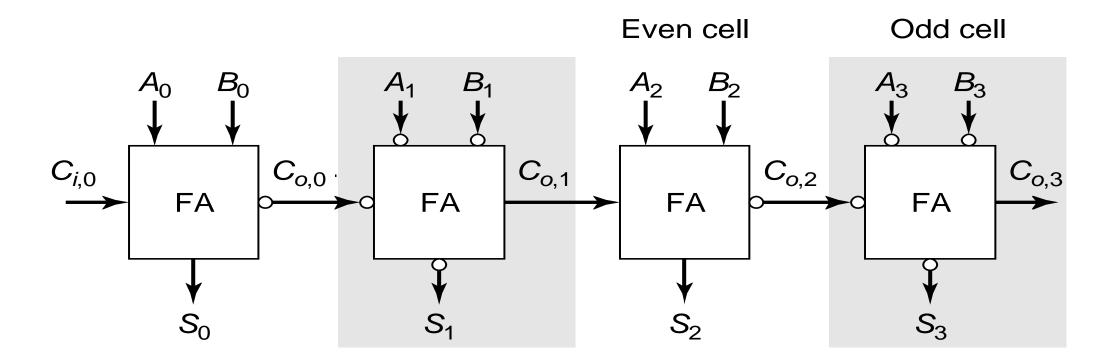
$$C_o(G, P) = G + PC_i$$
$$S(G, P) = P \oplus C_i$$

Inversion Property



$$\bar{S}(A, B, C_{i}) = S(\bar{A}, \bar{B}, \bar{C}_{i})$$
$$\overline{C}_{o}(A, B, C_{i}) = C_{o}(\bar{A}, \bar{B}, \bar{C}_{i})$$

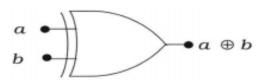
Minimize Critical Path by Reducing Inverting Stages



Exploit Inversion Property

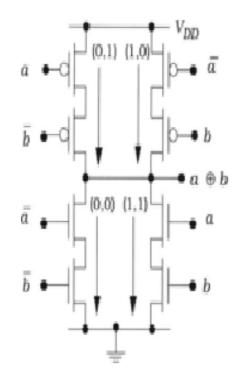
Mirror Circuits

- Mirror circuits are based on series-parallel logic gates, but are usually faster and have a more uniform layout
 - » Output 0's imply that an nFET chain is conducting to ground
 - » Output 1's means that a pFET group provides support from the power supply



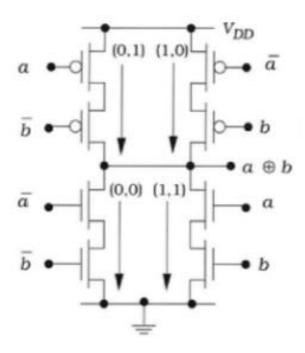
a	b	$a \oplus b$	On devices
0	0	0	- nFET
0	1	1	- pFET
1	0	1	- pFET
1	1	0	- nFET

Figure 9.1 XOR function table

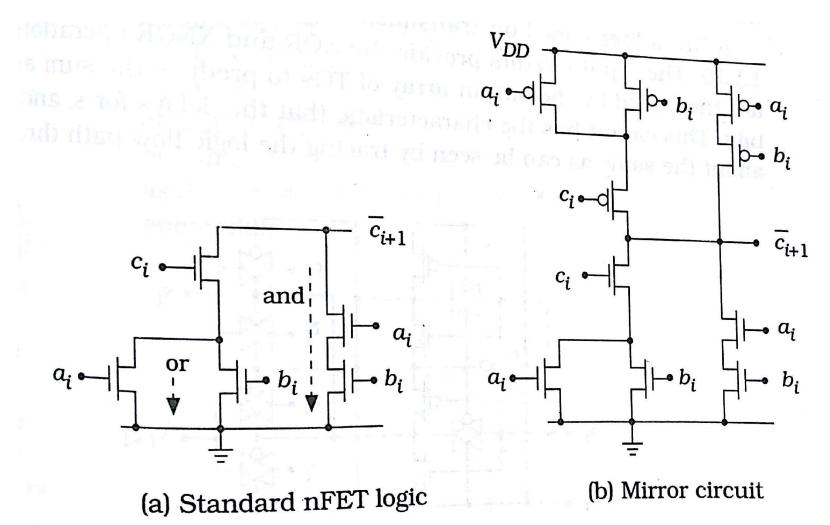


Mirror Circuits

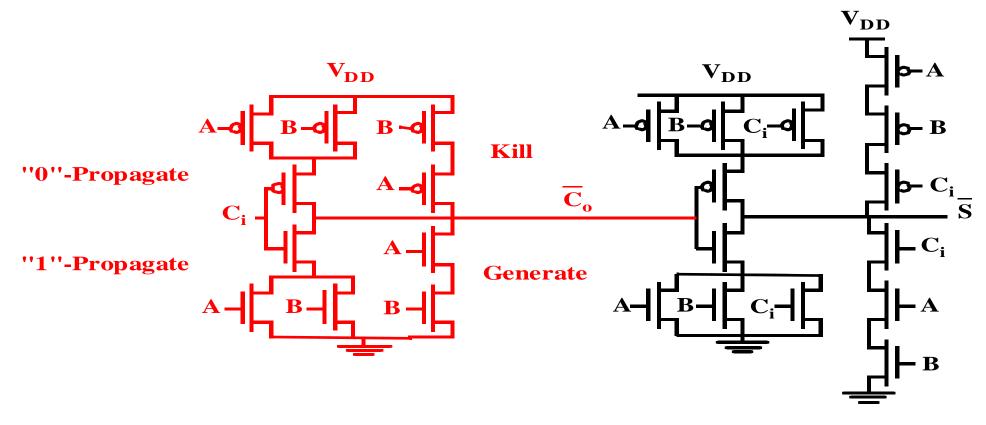
- □ Based on series-parallel logic gates
- □ Usually faster, more uniform layout
- Same transistor topology for nFETs and pFETs



Evolution of carry-out circuit

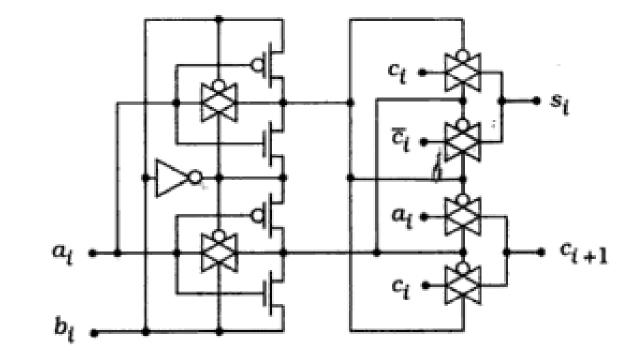


A Better Structure: The Mirror Adder



24 transistors

Transmission-gate full-adder circuit

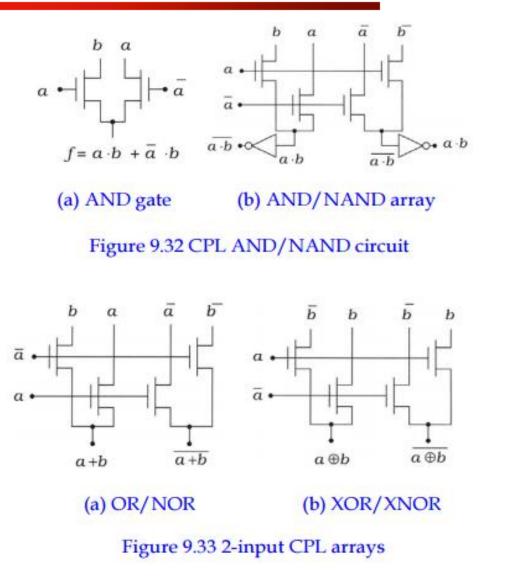


Complementary Pass-Transistor Logic

Complementary Pass-Transistor (CPL): an dual-rail tech. that is based on nFET logic equations

$$f = a \cdot b + \overline{a} \cdot a \qquad (9.41)$$
$$\Rightarrow a \cdot \overline{b} + \overline{a} = \overline{a} + \overline{b} = \overline{a \cdot b} \qquad (9.42)$$

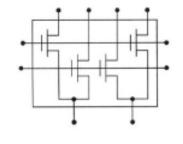
- CPL has several 2-input gates that can be created by using the same transistor topology with different input sequences
 - » Less layout area
 - » However, threshold will be loss and the fact that an input variable may have to drive more than one FET terminal



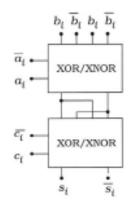
Complementary Pass-Transistor Logic

Dual-rail complementary pass-transistor logic (CPL)

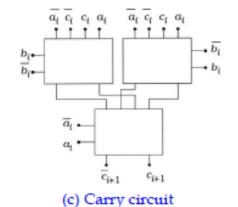
 $a_i \oplus b_i$ and $a_i \oplus b_i$ $s_n = \overline{(a_i \oplus b_i)} \cdot c_i + (a_i \oplus b_i) \cdot \overline{c_i}$ $\overline{a_i} \cdot b_i + \overline{b_i} \cdot \overline{c_i}$ $\overline{b_i} \cdot c_i + a_i \cdot b_i$ $\overline{a_i} \cdot \overline{b_i} + b_i \cdot \overline{c_i}$ $b_i \cdot c_i + a_i \cdot \overline{b_i}$



(a) 2-input array



(b) Sum circuit

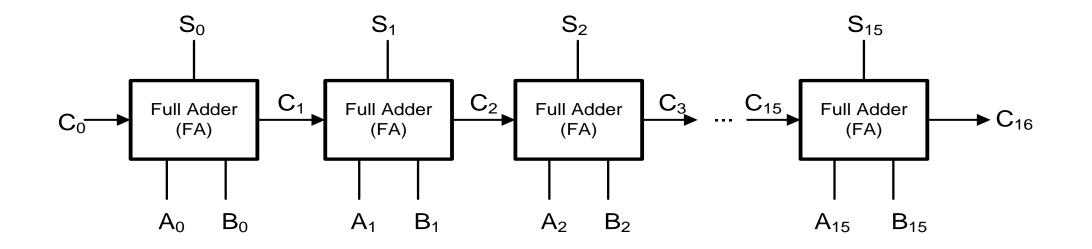


Full Adder using Half Adders



Ripple Carry Adders

• A carry ripple adder chain : 16-bit binary adder



- Cascade-connection
- Fast carry-out response is essential
- the delay will increase significantly when the number of bit is increased

Ripple-Carry Adders

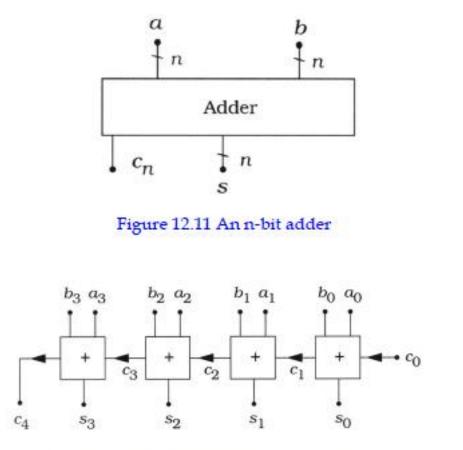


Figure 12.12 A 4-bit ripple-carry adder

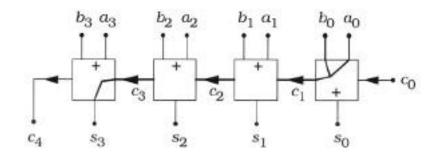


Figure 12.13 Worst-case delay through the 4-bit ripple adder

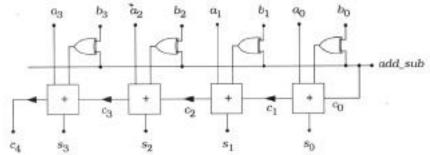
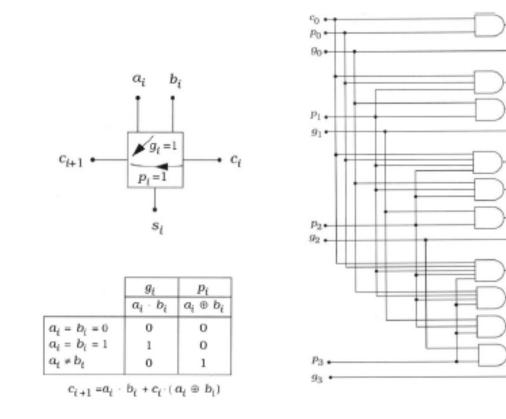
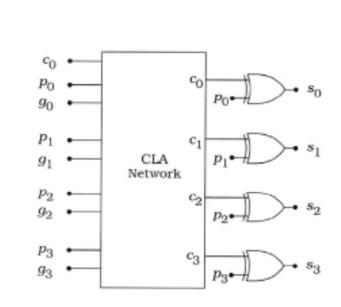


Figure 12.14 4-ibt adder-subtractor circuit

Carry Look-Ahead Adder





 c_1

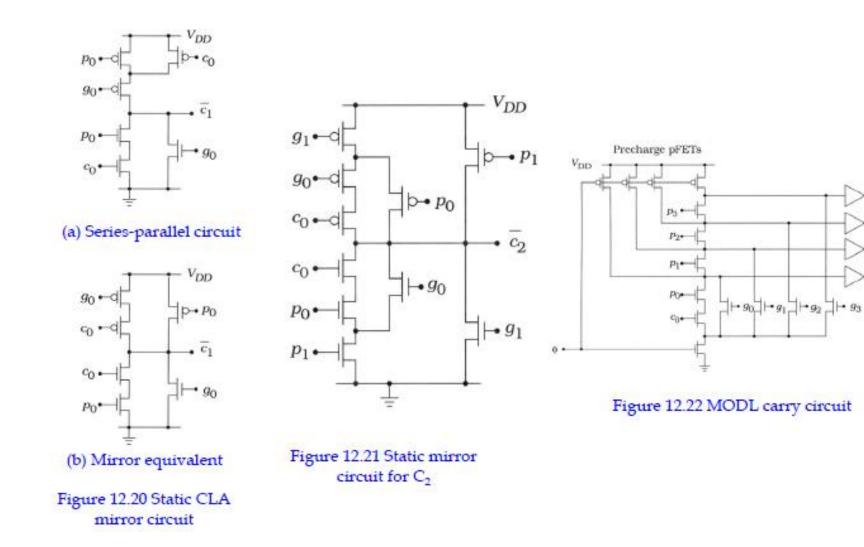
C₀

Ca

 c_A

Figure 12.15 Basis of the carry look-ahead algorithm Figure 12.16 Logic network for 4-bit CLA carry bits Figure 12.17 Sum calculation using the CLA network

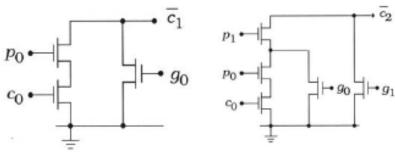
Carry Look-Ahead Adders



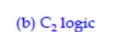
+ C1

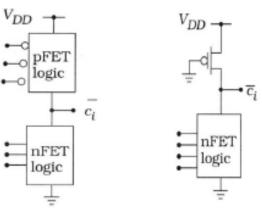
Carry Look-Ahead Adders

 c_2



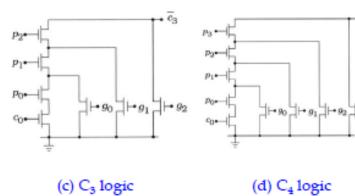
(a) C1 logic





(a) Complementary

(b) Pseudo nMOS



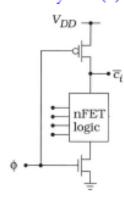


Figure 12.18 nFET logic arrays for the CLA terms

Figure 12.19 Possible uses of the nFET logic arrays in Figure 12.18

(c) Dynamic

Manchester Carry Chains

a_i	b_i	p_i	g_i	k_i
0	0	0	0	1
0	1	1	0	0
1	0	1	0	0
1	1	0	1	0

Figure 12.23 Propagate, generate, and carry-kill values

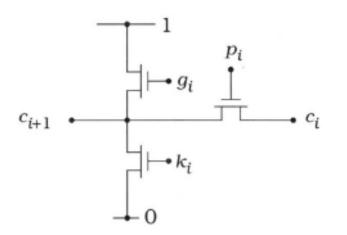


Figure 12.24 Switching network for the carry-out equation

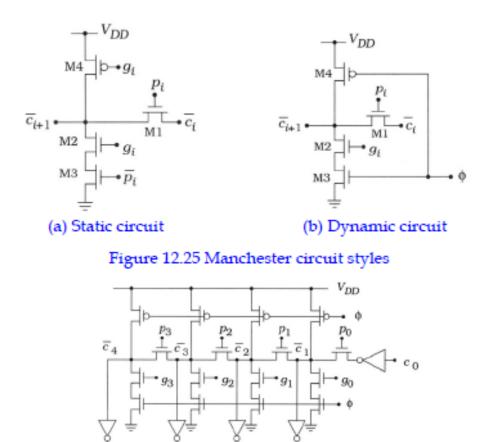


Figure 12.26 Dynamic Manchester carry chain

 c_2

C 1

c3

Multipliers

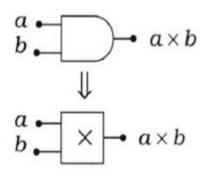
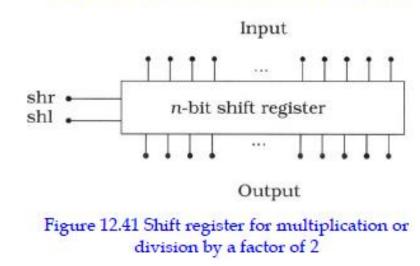


Figure 12.39 Bit-level multiplier

				$a_3 \times b_3$	a_2 b_2	a_1 b_1	a_0 b_0	multiplicand multiplier
				a3 b0	a2 b0	a1 b0	a0 b0	manipilei
		+	$a_3 b_1$	$a_2 b_1$	$a_1 b_1$	$a_0 b_1$		
		+ a3 b2	$a_2 b_2$		$a_0 b_2$			
+	$a_3 b_3$	$a_2 b_3$	$a_1 b_3$	$a_0 b_3$				
p_7	p_6	p_5	p_4	p_3	p_2	p_1	p_0	product

Figure 12.40 Multiplication of two 4-bit words





Multipliers

			×	a_3 b_3	a_2 b_2	a_1 b_1	a ₀ b ₀	multiplicand multiplier
				(a3	a_2	a_1	a_0) $ imes$ b_0	($a \times b_0$) 2^0
			(a ₃	a_2	a_1	a_0)	$\times b_1$	($a \times b_1$) 2^1
		(a_3	a_2	a_1	a_0)	$\times b_2$		($a imes b_2$) 2^2
+	(a ₃	a_2	a_1	a_0)	$\times b_3$			($a imes b_3$) 2^3
p_7	p_6	p_5	p_4	p_3	p_2	p_1	p_0	product

Figure 12.42 Alternate view of multiplication process

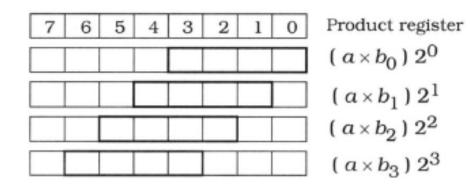
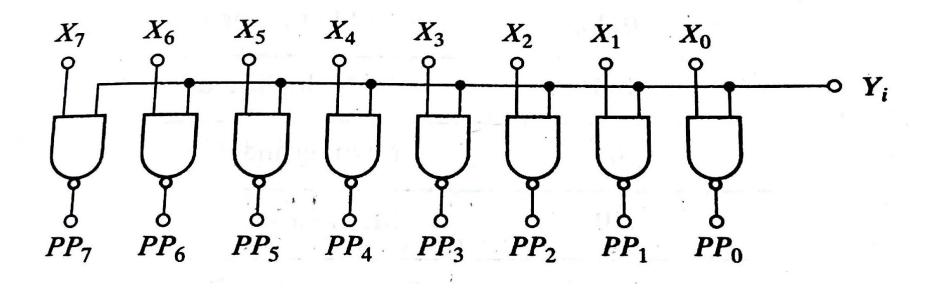


Figure 12.43 Using a product register for multiplication

Partial product generation logic



Shift-right multiplication sequence

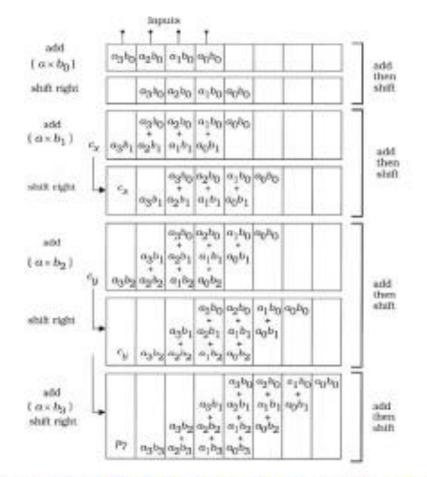
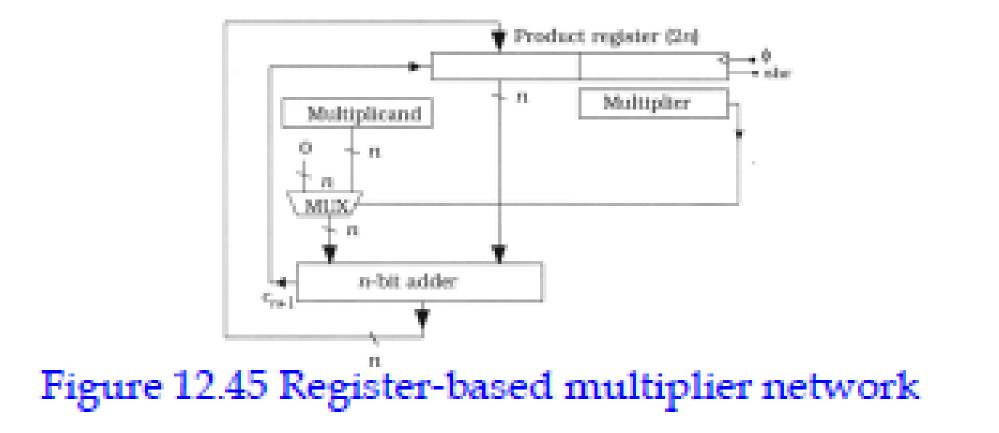


Figure 12.44 Shift-right multiplication sequence

Register based multiplier network



Partial Product Accumulation- Array Multipliers

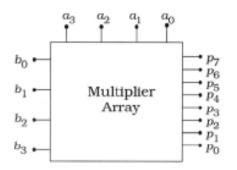


Figure 12.46 An array multiplier

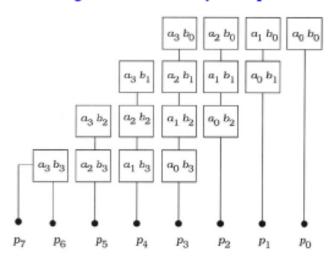


Figure 12.47 Modularized view of the multiplication sequence

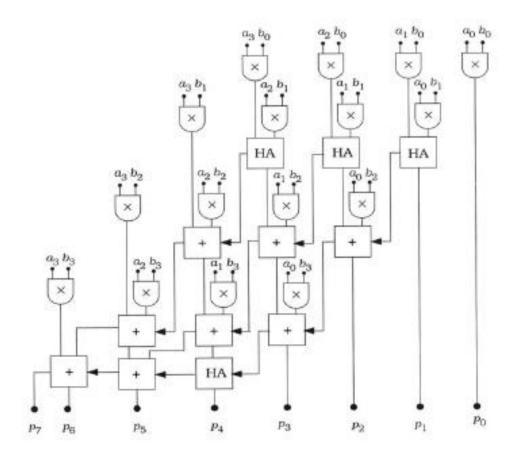
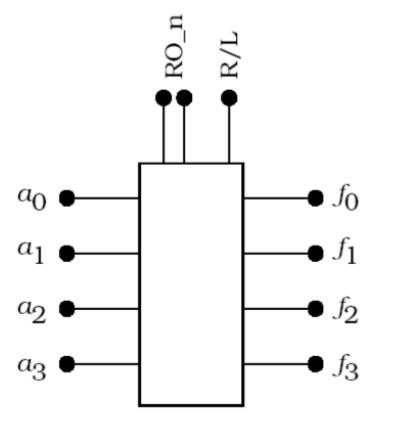
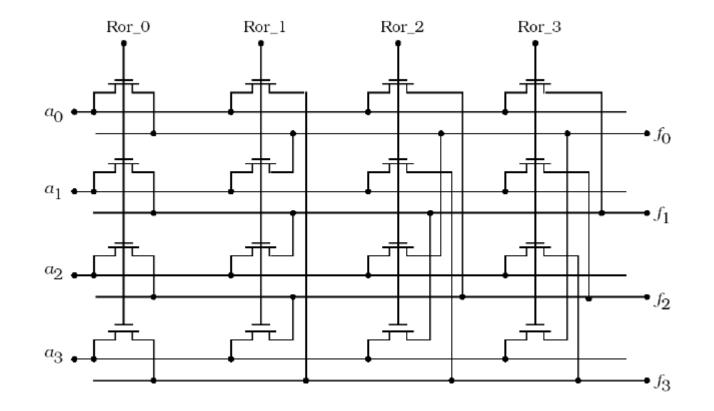


Figure 12.48 Details for a 4 X 4 array multiplier

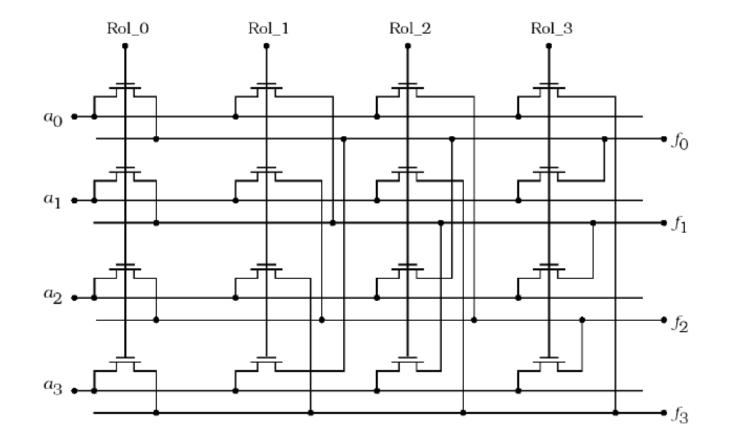
General Rotator



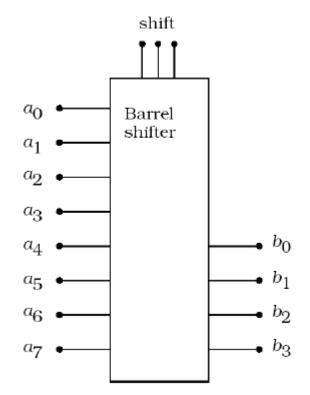
4-bit rotate-right network



Left-rotate switching array

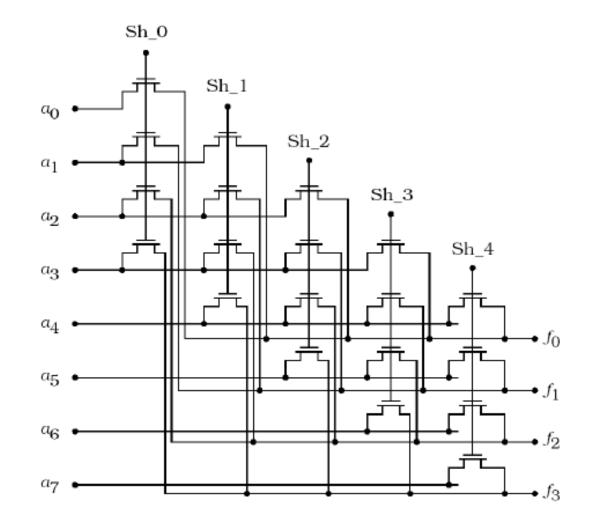


8 x 4 Barrel Shifter



shift	$b_0b_1b_2b_3$
0	$a_0 a_1 a_2 a_3 a_1 a_2 a_3 a_4$
2 3	$a_2 a_3 a_4 a_5 a_3 a_4 a_5 a_6$
4	$a_4 a_5 a_6 a_7$

FET Array Barrel Shifter



Thank You