Sequential Circuits

Classes of Logic Circuits

Combinational Circuits: Current Output(s) depend ONLY on CurrentInputs.

Sequential Circuits: Current Output(s) depend on Current Inputs and PAST Output(s).

Functions Using Sequential Operations

Sequential Circuit Construct

COMBINATIONAL LOGIC CIRCUIT MEMORY

- -> Sequential Circuits: Current Output(s) depend on Current Inputs and PAST inputs (via the feedback of some past State(s) and Output(s) to inputs).
- -> Memory is used to Store Past Values of State(s) and Output(s).

Bistable Sequential Circuits

Basic Cross-coupled Inverter pair

BISTABLE BEHAVIOR

Bistable Sequential Circuits - cont.

STATIC: V_{DD} is required to maintain stable state.

Basic Bistable Cross-coupled Inverter Pair has no means to apply input(s) to change the circuit's State.

Unclocked Latch Circuits

^{*}Data is written by over powering the feedback loop using S, R inputs.

STATE OF LATCH can LY SWITCHED between the

2 STABLE STATES

RESET STATE:

SET STATE:

 $S_{t1} = 1, R_{t1} = 0 \Rightarrow Q_{t1} = 1, \overline{Q}_{t1} = 0$ $S_{t1} = 0, R_{t1} = 1 \Rightarrow Q_{t1} = 0, \overline{Q}_{t1} = 1$ $S_{t1} = 0, R_{t1} = 0 \Rightarrow Q_{t1} = Q_{t0}, \overline{Q}_{t1} = \overline{Q}_{t0}$ HOLD:

(two cross-coupled Inverters) t - t1 > t - t0

(M2, MP2 and M3, MP3)

NOT ALLOWED: S = 1, R = 1 \longrightarrow state Q_{n+1} , Q_{n+1} is <u>indeterminate</u>

Unclocked CMOS NOR Based SR Latch Operation

Let at t = t0: $Q_{t0} = 0$, $\overline{Q}_{t0} = 1$

At
$$t = t1 > t0$$

1.
$$S_{t1} = V_{DD} \Rightarrow M1 \text{ ON, } MP1 \text{ OFF} \Rightarrow \overline{Q}_{t1} = 0$$

$$2.R_{t1} = 0$$
 and $\overline{Q}_{t1} = 0 \Rightarrow M4$ OFF, M3 OFF, MP3 ON, MP4 ON $\Rightarrow Q_{t1} = V_{DD}$

3.
$$Q_{t1} = V_{DD} \implies M2 \text{ ON, } MP2 \text{ OFF} \Longrightarrow \overline{Q}_{t1} = 0$$

9

Unclocked CMOS NOR Based SR Latch Operation - cont.

Let at
$$t = t0$$
: $Q_{t0} = 1$, $\overline{Q}_{t0} = 0$

At
$$t = t1 > t0$$

1.
$$R_{t1} = 1 \Rightarrow M4 \text{ ON, MP4 OFF} \Rightarrow Q_{t1} = 0$$

2.
$$S_{t1} = 0$$
 and $Q_{t1} = 0 \Rightarrow M1$ OFF, M2 OFF, MP1 ON, MP2 ON $\Rightarrow \overline{Q}_{t1} = V_{DD}$

3.
$$\overline{Q}_{t1} = V_{DD} \implies M3 \text{ ON, MP3 OFF} \implies Q_{t1} = 0$$

Scanned with CamScanner

Unclocked CMOS NOR Based SR Latch Operation - cont.

At t = t1 > t0

or

1.
$$S_{t1} = 0 \implies M1 \text{ OFF, MP1 ON}; R_{t1} = 0 \implies M4 \text{ OFF, MP4 ON}$$

2a.
$$Q_{t1} = Q_{t0} = V_{DD'}$$
 $\overline{Q}_{t1} = \overline{Q}_{t0} = 0 \Rightarrow M2 \text{ ON, MP2 OFF, M3 OFF, MP3 ON}$

2b.
$$Q_{t1}=Q_{t0}=0$$
, $\overline{Q}_{t1}=\overline{Q}_{t0}=V_{DD}=>$ M2 OFF, MP2 ON, M3 ON, MP3 OFF

11

Unclocked CMOS NAND Based SR Latch Circuit - cont

t = t1 > t = t0

S _{t1} R _{t1}	Q_{t1} \overline{Q}_{t1}	Operation		
0 0 0 1 1 0 1 1	$\begin{array}{ccc} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ Q_{t0} & \overline{Q}_{t0} \end{array}$	NOT allowed set reset hold		

SR-Latches

- + Simplest form of latch
- Asynchronous
- Not Allowed Input Sequence

Unclocked CMOS NAND Based SR Latch Circuit

Clocked CMOS Latch Circuits

CLOCKED SR LATCH: Synchronization is introduced through clock CK.

When CK = 0, S' = R' = 1 independent of the values of S and $R \implies HOLD$

 $\begin{array}{ll} \textbf{CK = 0}, \ \ \textbf{S = x}, \ \ \textbf{R = x => Q}_{n+1} = \textbf{Q}_{n}, \overline{\textbf{Q}}_{n+1} = \overline{\textbf{Q}}_{n} \\ \textbf{CK = 1}, \ \ \textbf{S = 1}, \ \ \textbf{R = 0 => Q}_{n+1} = 1, \ \ \overline{\textbf{Q}}_{n+1} = 0 \\ \textbf{CK = 1}, \ \ \textbf{S = 0}, \ \ \textbf{R = 1} => \textbf{Q}_{n+1} = 0, \ \ \overline{\textbf{Q}}_{n+1} = 1 \\ \textbf{CK = 1}, \ \ \textbf{S = 0}, \ \ \textbf{R = 1} = \textbf{Q}_{n+1} = \textbf{Q}_{$ **HOLD STATE:** SET STATE:

RESET STATE:

NOT ALLOWED: CK = (1), S = 1, $R = 1 \Rightarrow S' = 0$, R' = 0

"ACTIVE HIGH"

Clocked CMOS Latch Circuits - cont.

HOLD STATE: CK = 0, S = x, $R = x = Q_{n+1} = Q_n$, $\overline{Q}_{n+1} = \overline{Q}_n$ SET STATE: $CK = 1, S = 1, R = 0 \Rightarrow Q_{n+1} = 1, \overline{Q}_{n+1} = 0$ RESET STATE: $CK = 1, S = 0, R = 1 \Rightarrow Q_{n+1} = 0, \overline{Q}_{n+1} = 1$

NOT ALLOWED: CK = 1, S = 1, R = 1

WHEN "GLITCH" ON S (OR \mathbb{R}) OCCURS DURING $\mathbb{CK} = 1$, Q IS SET (OR RESET)

LEVEL SENSITIVE: WHEN CK = 1, ANY CHANGES IN S, R WILL EFFECT Q.

Clocked CMOS Latch Circuits - cont.

Another Gate Level schematic of a Clocked NAND Based SR Latch

When CK = 1, S' = R' = 1 independent of the values of S and $R \implies HOLD$

"ACTIVE

CK	S	R	Q_{n+1}	\overline{Q}_{n+1}	Operation
0	0	0	0	0	NOT allowed
0	0	1	1	0	set
0	1	0	0	1	reset
1	x	x	Q _n (Q _n	hold

$$S' = R' = 0$$

Clocked CMOS Latch Circuits - cont.

CMOS Clocked NAND Based SR Latch or Flip-Flop

- Level Sensitive
- Not Allowed Input Sequence

CMOS Clocked Latch Circuits - cont.

NAND BASED CLOCKED JK FLIP-FLOP

Clocked NAND Based JK Latch Operation

CK = 1

J	K	Q_n	\overline{Q}_{n}	S	R	Q_{n+1}	\overline{Q}_{n+1}	Operation
0	0	0	1	1	1	0	1	hold
0	0	1	0	1	1	1	0	hold
0	1	0	1	1	1	0	1	reset (hold)
0	1	1	0	1	0	0	1	reset
1	0	0	1	0	1	1	0	set
1	0	1	0	1	1	1	0	set (hold)
1	1	0	1	0	1	1	0	toggle
1	1	1	0	1	0	0	1	toggle

The <u>not-allowed</u> S, R values S = R = 0 do <u>not occur</u> for any values of J, K, CK.

osc $\xrightarrow{\text{not desirable,}}$ but the state Q_{n+1} , Q_{n+1} is $\underline{\text{determinate}}$

Clocked NAND Based JK Latch Operation

S \overline{Q}_n R Operation $Q_{n+1}\overline{Q}_{n+1}$ K Q_n hold hold reset reset set set toggle toggle

CK = 1

TO PREVENT OSICLLATION WHEN J = K = 1:

 τ_{JKP} = INPUT-OUTPUT PROP DELAY OF JK LATCH (CK 1 -> 0 BEFORE Q, \overline{Q} CAN SWITCH 2nd TIME)

OSC

- Start with CLK = 0, the S, R inputs are disconnected from the input Latch1.
- Changes in S, R cannot affect the state of Q, Q.

When CLK = 1, S, R are able to control the state of Latch1.

- Inverted CLK applied to Latch2 prevents the state of Latch1 from effecting Q, Q.
- Any changes to R, S are tracked by Latch1 while CLK = 1, but not reflected at Q, Q.

When CLK = 0, S, R are again isolated from Latch1.

- Inverted CLK allows the current state of Latch1 to reach Latch2.
- Q, \overline{Q} can only change state when the CLK signal falls from 1 to 0.
- This is the falling (negative) edge of the CLK signal.

23

CLOCKED EDGE TRIGGERED JK FLIP-FLOP

- + Synchronous Operation
- + No Not-Allowed Inputs
- + Not Level Sensitive
- + No Q, \overline{Q} Oscillation when J = K = 1

Since the behavior of the JK flip-flop is completely predictable under all conditions, it is the preferred type of flip-flop for most logic circuit designs.

Scanned with CamScanner

CMOS D-Latch Operation

- + Much simpler then JK Latch.
- + Does not require Edge Triggering for Safe Operation.

CMOS D-Latch - cont.

alternative implementation using clocked tri-state inverters

CK = 1: Tri-state INV 1 is active, Tri-state INV 2 is Hi-Z and $Q_n = D_n$ CK = 0: Tri-state INV 1 is Hi-Z, Tri-state INV 2 is active and \overline{Q}_n are held

CMOS D Flip-Flop

Positive D - Latch

Negative D - Latch

D Flip-Flop = Positive D-Latch + Negative D-Latch

CMOS D Flip-Flop – Positive Edge Triggered

FOR CLK = 1

- 1. CLK = 0: master Q_m tracks input D; slave Q_s = previous D_{n-1} sample (Q_s is transparent to variations in D).
- 2. CLK = $0 \rightarrow 1$: master stores $Q_m = D_n$ (new D sample).

30

- 3. CLK = 1: master passes $Q_m = D_n$ to slave output $Q_s(Q_m$ and Q_s are transparent to variations in D).
- 4. CLK = 1 -> 0: slave locks in new D_n .
- 5. CLK = 0: master Q_m begins tracking D. $(Q_s$ is transparent to variations in D)
- 6. CLK = 0 -> 1: master stores $Q_m = D_{n+1}$.

CMOS Dynamic D Flip-Flop

- 1. NO FEEDBACK REGENERATIVE FEEDBACK LOOP
- 2. STATES STORED ON SOFT NODES