HF Model of BJT: Model is a two port network (TPN) consists of RLC voltage source & current source. Each and every component in BJT model represents physical phenomenon or characteristics of transistor.

Step by step formation of model:

(1) Let us develop HF model of transistor connected in CE configuration

B', C', E' are idealized internal base collector and emitter, $r_b \to$ base spreading resistor i.e. a resistor between base terminal and internal base, similarly $r_c \& r_c$ can also be defined. These resistances are very small.

Input characteristic of BJT indicates that as V_{BE} increase, I_{B} increases exponentially. Inverse of slope of characteristic at Q point represent input resistance of BJT. This point is represented in BJT by connecting a resistance between B' & E'. This is known as input resistance of BJT.

$$h_{ie} = r_{\pi} = \frac{1}{slope} = \frac{\Delta V_{BE}}{\Delta I_B} \bigg|_{\Delta V_{CE} = 0}$$

4) As V_{CE} increases, width of depletion region D increases, width of base B decreases, electrons & hole recombination in base region decreases. In number of electron drifting to collector increases. This increases I_C . It means as V_{CE} increases, I_C increases. This is due to early effect & provides slope of charac. This phenomenon is shown in the

model by connecting a resistance r_0 between C' & E' where.

$$r_o = \frac{1}{slope} \bigg|_{Qpt} = \frac{\Delta V_{CE}}{\Delta I_C} \bigg|_{\Delta IB=0}$$

 $r_o \rightarrow 40$ to $80k\Omega$

5) BJT is a current control device. Output current I_C is controlled by input current I_B . $\boxed{\int c = g_m V_{\parallel}}$ i.e. $I_C = h_{fe}I_B = \beta I_B$. This characteristic of transistor is shown in model by a dependent current source.

 β or $h_{fe} \rightarrow 20$ to 300. $V_{CE=V_{CC}-I_{CR}}$

As V_{BE} varies, I_B varies since $I_C = \beta I_B$, I_C varies this changes V_{CE} . Variation in V_{CE} changes reverse bias potential across J_{BC} . This causes variation in base width, which finally changes I_B . It means change in output i.e. V_{CE} causes change in input (I_B) . This indicates feedback between output to input. This internal feedback of BJT is represented in model by connecting a resistance r_{μ} between input & output [C' & B'] $r_{\mu} \to 4$ to $8M\Omega$

- 7) Junction J_{BE} is reverse bias. This causes an appreciable depletion region to exists across junction. Depletion region doesn't have any free electron in it. ∴ this behaves like insulator and works as dielectric, while P region and N region works as plate with +ve and -ve charges. This forms a capacitance between C' & B'. This is known as transition capacitance (C_T or C_µ).
- 8) At LF time per cycle is more.

 Therefore time available for electron to diffuse through J_{BE}, move through base region and drift to collector is large. But at high frequency time per cycle is less.

electron coming from E did not get enough time to diffuse through J_{BE}. Similarly holes coming from collector did not get enough time to diffuse through forward biased J_{BE}. This causes accumulation of electrons on E side of J_{BE}, while holes gets accumulated on B side of J_{BE}. This phenomenon of charge storage around forward biased J_{BE} is represented in model by a capacitor between B' & E' known as diffusion capacitance C_x or C_D.

Final BJT model with transition & diffusion capacitance is shown below.

Bipolar Transistor (aps Internal Contacts (Cus Cir, Cip)

(HF modu)

B

Vin Stir (Aps Internal Contacts of the contact of the

Wires at IP & of wire at high

of amplifius are

at different ys & There

exists a capacitance wire at low
potential

between wires

Course

Of wiring capacitance

Course

Of wiring capacitance

(wo — of wiring capacitances)

Course

Therefore, there
exists a capacitances

Course

Of wiring capacitances

Course

Of wiring capacitances

Course

Of wiring capacitances

Circuit diagram of amplifier with all stray

 C_{C1} , C_{C2} , $C_E \rightarrow$ connected capacitors C_T , C_{π} , C_{ce} , C_{wi} , $C_{wo} \rightarrow stray$, parasitic, fictitious capacitor.

 \rightarrow in μ f. connected caps \rightarrow in pf. stray caps

STATUS OF CAPACITORS IN DIFFERENT FREQUENCY RANGE

- $DC \rightarrow (f=0) \rightarrow X_C = \frac{1}{2\pi fC} = \infty \rightarrow \text{all connected and stray caps are open.}$
- $(LF) \rightarrow \text{very low frequency (few hertz)} \rightarrow X_C = \frac{1}{2\pi (Hertz)(\mu f)}$ neither very low

nor very high : connected capacitor are considered

$$\rightarrow X_C = \frac{1}{2\pi (Hertz)(pf)} = \text{very high}$$
 : at LF stray capacitors are open.

 $MF \rightarrow Mid$ frequency (few 100's of KHz)

$$\rightarrow X_C = \frac{1}{2\pi \left(100 \times 10^3 \, Hz\right) \left(\mu f\right)} = \text{very low}$$

- connected capacitors are short, $X_C = \frac{1}{2\pi (100 \times 10^3)(pf)} = \text{high}$
- stray capacitors are open.
- HF \rightarrow high frequency (100's of MHz) $\rightarrow X_C = \frac{1}{2\pi (MHz)(\mu f)}$
- connected capacitors are shorted, $X_C = \frac{1}{2\pi (MHz)(pf)} = \text{high}$
- stray caps are neither short nor open but considered.