K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING 2UXC402: ELECTRONIC CIRCUITS ANALYSIS AND DESIGN SEM IV SET OF QUESTIONS
 $7^{\text {th }}$ January, 2020

[MODULE 1]

1. Assume any suitable data if necessary
2. Read the questions carefully before attempting

MODULE 1.1
Introduction: Logarithms, Decibels, General frequency consideration.

1. Explain the following concepts with examples
a) Log scale
b) Semi-log scale
c) Decibels
d) Cut-off frequency
e) Bandwidth
2. Given the frequency response of Figure 1
a) Find the lower cut-off frequency
b) Find the higher cut-off frequency
c) Find the mid-band voltage gain in dB
d) Find the bandwidth of the response
e) Redraw the frequency response of figure 1 and mark on it the lower and higher cut-off frequencies, mid-band gain in dB and bandwidth.

Figure 1: Question 2
3. Given the frequency response of Figure 2
a) Determine the break frequency
b) Sketch the frequency response curve
c) Locate the -3 dB point

Figure 2: Question 3

MODULE 1.2

Low-frequency Response: Effect of capacitor (coupling, bypass, load) on frequency response of BJT, MOSFET amplifiers.

```
******************* *******************
```

4. Draw the following with respect to Common emitter(CE) BJT amplifier with bypass capacitor C_{E}, load R_{L} and source resistance $R_{s i g}$ (use hybrid-pi model wherever necessary)
a) Circuit Diagram
b) Low frequency equivalent circuit
c) Mid frequency equivalent circuit
5. Explain the effect of coupling and bypass capacitors on frequency response of CE BJT amplifier
6. A CE amplifier with transistor parameters $\beta=100, V_{B E}=0.7 \mathrm{~V}$ is shown in figure 3
a) Calculate the DC parameters $I_{B Q}$ and $I_{C Q}$
b) Calculate the hybrid π model parameters r_{π} and $g m$
c) Calculate the lower cut-off frequency due to $C_{C 1}, C_{C 2}$, and C_{E}
f) Calculate the overall lower cut-off frequency of the circuit
g) Calculate the mid-band voltage gain in dB
h) Plot the frequency response of the circuit

Figure 3: Question 6

Answers: $I_{B Q}=15.7 \mu A \quad I_{C Q}=1.57 \mathrm{~mA} \quad r_{\pi}=1.65 \mathrm{k} \Omega \quad g_{m}=60.4 \mathrm{~mA} / \mathrm{V}$
$f_{L C C 1}=6.71 \mathrm{~Hz} \quad f_{L C C 2}=25.67 \mathrm{~Hz} \quad f_{L C E}=316.8 \mathrm{~Hz} \quad f_{L}=316.8 \mathrm{~Hz}$
$A_{V M I D}=33.9 \mathrm{~dB}$
7. Draw the following with respect to Common emitter(CE) BJT amplifier without bypass capacitor C_{E}, with load R_{L} and with source resistance $R_{s i g}$ (use hybrid-pi model wherever necessary)
a) Circuit Diagram
b) Low frequency equivalent circuit
c) Mid frequency equivalent circuit
8. A CE amplifier with transistor parameters $\beta=200, V_{B E}=0.7 V$ is shown in figure 4
a) Calculate the lower cut-off frequency of the circuit
b) Calculate the mid-band voltage gain in dB
c) Plot the frequency response of the circuit

Figure 4: Question 8

Answers: $I_{B Q}=13.58 \mu A \quad I_{C Q}=2.72 m A \quad r_{\pi}=1.91 \mathrm{k} \Omega \quad g_{m}=104.61 \mathrm{~mA} / V$
$f_{L C C 1}=1.76 \mathrm{~Hz} \quad f_{L C C 2}=11.287 \mathrm{~Hz} \quad f_{L}=11.287 \mathrm{~Hz} \quad A_{V M I D}=15.19 \mathrm{~dB}$
9. A amplifier with transistor parameters $\beta=100, V_{B E}=0.7 \mathrm{~V}$ is shown in figure 5
a) Calculate the lower cut-off frequency of the circuit
b) Calculate the mid-band voltage gain in dB

Figure 5: Question 9

$$
\begin{array}{llll}
\text { Answers: } I_{B Q}=34.91 \mu A \quad I_{C Q}=3.49 m A & r_{\pi}=744.98 \Omega & g_{m}=134.23 \mathrm{~mA} / V \\
f_{L C C 1}=127.95 \mathrm{~Hz} & f_{L C C 2}=20.67 \mathrm{~Hz} & f_{L C E}=1909.99 \mathrm{~Hz} & f_{L}=1909.99 \mathrm{~Hz} \\
A_{V M I D}=43.34 d B & & &
\end{array}
$$

10. Draw the following with respect to Common collector(CC) BJT amplifier with load R_{L} and with source resistance $R_{\text {sig }}$ (use hybrid-pi model wherever necessary)
a) Circuit Diagram
b) Low frequency equivalent circuit
c) Mid frequency equivalent circuit
11. Explain the effect of coupling capacitors on frequency response of CC BJT amplifier
12. A amplifier with transistor parameters $\beta=100, V_{B E}=0.7 \mathrm{~V}$ is shown in figure 6
a) Calculate the lower cut-off frequency of the circuit
b) Calculate the mid-band voltage gain

Figure 6: Question 12

$$
\begin{aligned}
& \text { Answers: } I_{B Q}=6.325 \mu \mathrm{~A} \quad I_{C Q}=0.6325 \mathrm{~mA} \\
& f_{L C C 1}=33.2 \mathrm{~Hz}
\end{aligned} \quad f_{L C C 2}=194.08 \mathrm{~Hz} \quad f_{L}=194.08 \mathrm{~Hz} \quad A_{V M I D}=0.911 \mathrm{k} .
$$

13. Draw the following with respect to Common source(CS) E-MOSFET amplifier with bypass capacitor C_{S}, load R_{L} and source resistance $R_{s i g}$
a) Circuit Diagram
b) Low frequency equivalent circuit
c) Mid frequency equivalent circuit
14. Explain the effect of coupling and bypass capacitors on frequency response of CS EMOSFET amplifier
15. A Common source (CS) E-MOSFET amplifier with transistor parameters $V_{G S(T H)}=5 \mathrm{~V}$, $V_{G S(O N)}=10 \mathrm{~V}, I_{D(O N)}=3 m A$ is shown in figure 7
a) Calculate the lower cut-off frequency of the circuit
b) Calculate the mid-band voltage gain in dB
c) Plot the frequency response of the circuit

Figure 7: Question 15

Answers: $k_{n}=0.12 \mathrm{~mA} / V^{2} \quad V_{G S Q}=12.485 \mathrm{~V} \quad I_{D Q}=6.723 \mathrm{~mA} \quad g_{m}=1.796 \mathrm{~mA} / \mathrm{V}$ $f_{L C C 1}=0.0034 H z \quad f_{L C C 2}=2.6 \mathrm{~Hz} \quad f_{L C S}=10.21 \mathrm{~Hz} \quad f_{L}=10.21 \mathrm{~Hz}$ $A_{V M I D}=-4.146$
16. A E-MOSFET amplifier with transistor parameters $V_{G S(T H)}=3 V, V_{G S(O N)}=8 V$, $I_{D(O N)}=6 m A, r_{d}=50 k \Omega$ is shown in figure 8
a) Calculate the lower cut-off frequency of the circuit
b) Calculate the mid-band voltage gain in dB

Figure 8: Question 16

Answers: $\quad k_{n}=0.24 m A / V^{2} \quad V_{G S Q}=6.4 \mathrm{~V} \quad I_{D Q}=2.77 \mathrm{~mA} \quad g_{m}=1.63 \mathrm{~mA} / \mathrm{V}$
$f_{L C C 1}=15.91 \mathrm{mHz} \quad f_{L C C 2}=1.57 \mathrm{~Hz} \quad f_{L}=1.57 \mathrm{~Hz} \quad A_{V M I D}=-3.26$
17. Explain the effect of load capacitor on frequency response of CE BJT amplifier
19. For the circuit shown in figure 9 below, JFET parameters are $I_{D S S}=8 m A, V_{P}=-4 V$, $r_{d}=\infty$
a) Find the lower cut-off frequency
b) Plot its frequency response

Figure 9: Question 19

Answers: $\quad V_{G S Q}=-2 V \quad I_{D Q}=2 m A \quad g_{m}=2 m A / V \quad f_{L C C 1}=15.76 H z \quad f_{L C C 2}=$ $46.13 \mathrm{~Hz} \quad f_{L C S}=238.73 \mathrm{~Hz} \quad f_{L}=238.73 \mathrm{~Hz} \quad A_{V M I D}=-2.96$
20. Why gain of RC coupled amplifier falls in low frequency range

MODULE 1.3

High-frequency Response: High frequency equivalent hybrid-pi model, Miller effect and miller capacitance, unity gain bandwidth, high frequency response of BJT and MOSFET amplifiers.

21. Draw high frequency model of (npn) Bipolar transistor. Explain the significance of various components in it
22. Explain Miller effect. Derive the expressions of input miller capacitance and output miller capacitance for an amplifier with gain A_{V}
23. Draw the following with respect to Common emitter(CE) BJT amplifier, considering various parasitic and wiring capacitance
a) Circuit Diagram
b) High frequency equivalent circuit
24. Explain the effect of parasitic or inter-electrode capacitance and wiring capacitance on frequency response of CE BJT amplifier
25. Explain high frequency response of CE BJT amplifier
26. Draw the following with respect to E-MOSFET CS amplifier, considering various parasitic and wiring capacitance
a) Circuit Diagram
b) High frequency equivalent circuit
27. Explain the effect of parasitic or inter-electrode capacitance and wiring capacitance on frequency response of E-MOSFET CS amplifier
28. Explain high frequency response of CS MOSFET amplifier
29. A CE amplifier with transistor parameters $\beta=100, V_{B E}=0.7 \mathrm{~V}$ is shown in figure 10. The various parasitic capacitance of the transistor are $C_{\pi}\left(C_{b e}\right)=36 p F, C_{\mu}\left(C_{b c}\right)=4 p F$, $C_{c e}\left(C_{c b}\right)=1 p F$ and the wiring capacitance are $C_{w i}=6 p F, C_{w o}=8 p F$
a) Calculate the lower cut-off frequency of the circuit
b) Calculate the higher cut-off frequency of the circuit
c) Calculate the mid-band voltage gain in dB
d) Plot the complete frequency response of the circuit on semi-log paper

Figure 10: Question 29

Answers: $I_{B Q}=15.7 \mu A \quad I_{C Q}=1.57 m A \quad r_{\pi}=1.65 k \Omega \quad g_{m}=60.4 m A / V$
$f_{L C C 1}=6.71 \mathrm{~Hz} \quad f_{L C C 2}=25.67 \mathrm{~Hz} \quad f_{L C E}=316.8 H z \quad f_{L}=316.8 \mathrm{~Hz}$
$A_{V M I D}=33.9 d B \quad C_{m i}=202.24 p F \quad C_{m o}=4.04 p F \quad C_{i}=244.24 p F$
$C_{o}=13.04 p F \quad f_{H i}=1.127 \mathrm{MHz} \quad f_{H o}=8.6 \mathrm{MHz} \quad f_{H}=1.127 \mathrm{MHz}$
30. A MOSFET CS amplifier with transistor parameters $V_{T N}=0.8 V, k_{n}=1 \mathrm{~mA} / V^{2}$ is shown in figure 11. The various parasitic capacitance of the transistor are $C_{g s}=2 p F$ and $C_{g d}=0.2 p F$
a) Calculate the higher cut-off frequency of the circuit
b) Calculate the mid-band voltage gain

Figure 11: Question 30

Answers: $I_{D Q}=0.49 \mathrm{~mA} \quad V_{G S Q}=1.5 \mathrm{~V} \quad g_{m}=1.4 m A / V \quad A_{V M I D}=-3.684$ $C_{m i}=0.9368 p F \quad C_{m o}=0.254 p F \quad C_{i}=2.9368 p F \quad C_{o}=0.254 p F \quad f_{H i}=6.86 \mathrm{MHz}$ $f_{\text {Нo }}=187.99 \mathrm{MHz} \quad f_{H}=6.86 \mathrm{MHz}$
31. Draw high frequency model of N channel MOSFET. Explain the significance of various components in it
32. Derive the expression of unity gain bandwidth $\left(f_{T}\right)$ for MOSFET
33. Explain how miller capacitance affects the high frequency response of MOSFET amplifier.
34. For the circuit shown in figure 12 below, JFET parameters are $I_{D S S}=8 m A, V_{P}=-4 V$, $r_{d}=\infty$. The various parasitic capacitance are $C_{g d}=2 p F, C_{d s}=0.5 p F, C_{g s}=4 p F$, $C_{w i}=5 p F, C_{w o}=6 p F$
a) Find the higher cut-off frequency

Figure 12: Question 34

Answers: $\quad V_{G S Q}=-2 V \quad I_{D Q}=2 m A \quad g_{m}=2 m A / V \quad A_{V M I D}=-2.96$
$C_{m i}=7.92 p F \quad C_{m o}=2.675 p F \quad C_{i}=16.92 p F \quad C_{o}=9.175 p F \quad f_{H i}=950.13 \mathrm{KHz}$
$f_{\text {Ho }}=11.579 \mathrm{MHz} \quad f_{H}=11.579 \mathrm{MHz}$
35. Why gain of RC coupled amplifier falls in high frequency range
36. A BJT with $I_{c}=1 m A, C_{\pi}=4 p F, C_{\mu}=0.5 p F$. Find $f_{\beta} \& f_{T}$

Answers: $f_{\beta}=9.09 \mathrm{MHz} \quad f_{T}=1.36 G H z$
37. Why bandwidth of CB configuration is higher than that of CE configuration
38. For NMOS, $k_{n}=0.2 m A / V^{2}, V_{T N}=1 V, C_{g d}=0.02 p F, C_{g s}=0.25 p F, I_{D}=0.4 m A$

Find f_{T}
Answers: $f_{T}=335 \mathrm{MHz}$

MODULE 1

Previous years Exam questions (ESE exam, IA, Mid term test)

1. For the Common emitter amplifier shown in figure 13 , the parameters of the transistor
are $\beta=100, V_{B E}=0.7 \mathrm{~V}$ and $V_{A}=\infty$. Internal capacitance of transistors are
$C_{b e}=36 p F, C_{b c}=4 p F, C_{c e}=1 p F$ and wiring capacitance are $C_{w i}=6 p F, C_{w o}=8 p F$
a) Draw the three equivalent circuits that represent the amplifier in the low-frequency range, mid-band range, and the high frequency range
b) Calculate the value of mid band gain in dB
c) Calculate the value of lower cut-off frequency
d) Calculate the value of higher cut-off frequency
e) Sketch the complete frequency response in semi-log paper

Figure 13: Question 1
2. Derive the expression for lower cut-off frequency of BJT amplifier. Hence explain how the frequency response is affected by different components.
3. Derive the expression for f_{β} and f_{T}
4. The parameters of the transistor in the circuit shown in figure 14 are $\beta=100$, $V_{B E}=0.7 \mathrm{~V}$ and $V_{A}=\infty$. Neglect the capacitance effects of the transistor.
a) Draw the three equivalent circuits that represent the amplifier in the low-frequency range, mid-band range, and the high frequency range
b) Determine the values of mid band gain in dB , lower cut-off frequency and higher cut-off frequency
c) Sketch the complete frequency response in semi-log paper

Figure 14: Question 4
5. Explain the procedure to find the lower cut-off frequency for CS amplifier
6. A MOSFET CS amplifier with transistor parameters $V_{T N}=0.8 V, k_{n}=1 m A / V^{2}$ is shown in figure 15. The various parasitic capacitance of the transistor are $C_{g s}=20 p F$ and $C_{g d}=2 p F$
a) Calculate the lower 3 dB frequency
b) Calculate the mid-band voltage gain
c) Calculate the higher 3 dB frequency
d) Sketch the complete frequency response in semi-log paper

Figure 15: Question 6
7. The parameters of the transistor in the circuit shown in figure 16 are $\beta=100$, $V_{B E}=0.7 \mathrm{~V}$ and $V_{A}=\infty$.
a) Calculate the lower 3 dB frequency
b) Calculate the mid-band voltage gain
c) Sketch the low frequency response in semi-log paper

Figure 16: Question 7
8. BJT amplifier given below in figure 17 , have $\beta=120, V_{B E}=0.7 \mathrm{~V}, C_{b e}=40 p F$, [10] $C_{b c}=12 p F, C_{c e}=8 p F, C_{w i}=5 p F, C_{w o}=8 p F$
a) Determine $A_{V M I D}$ and $A_{V S M I D}$
b) Determine lower cut-off frequency
c) Determine higher cut-off frequency

Figure 17: Question 8
9. The circuit given below in figure 18 , have $\beta=100, V_{B E}=0.7 V, C_{b e}=30 p F, C_{b c}=2 p F$, [10] $C_{c e}=5 p F, C_{w i}=8 p F, C_{w o}=4 p F$
a) Determine mid frequency voltage gain
b) Determine $f_{H i}$
c) Determine $f_{H o}$

Figure 18: Question 9

$$
\begin{aligned}
& \text { Answers: } I_{B Q}=12.35 \mu A \quad I_{C Q}=1.235 m A \quad r_{\pi}=2.1 k \Omega \quad g_{m}=47.5 \mathrm{~mA} / V \\
& A_{V M I D}=-72.81 \quad C_{m i}=147.62 p F \quad C_{m o}=2.027 p F \quad C_{i}=185.62 p F \\
& C_{o}=11.027 p F \quad f_{H i}=2.32 M H z \quad f_{H o}=6.95 \mathrm{MHz}
\end{aligned}
$$

10. A single stage CS JFET amplifier is shown in figure 19. Given: $I_{D S S}=8 m A, V_{P}=-4 V$, $r_{d}=\infty, C_{d s}=3 p F, C_{g s}=10 p F, C_{g d}=4 p F, C_{w i}=5 p F, C_{w o}=6 p F$
a) Determine and plot complete frequency response(Low and High) of the circuit

Figure 19: Question 10

Answers: $V_{G S Q}=-2 V \quad I_{D Q}=2 m A \quad g_{m}=2 m A / V \quad A_{V M I D}=-2.97$
$f_{L C i n}=15.76 \mathrm{~Hz} \quad f_{L C o}=46.13 \mathrm{~Hz} \quad f_{L C s}=238.73 \mathrm{~Hz} \quad f_{L}=238.73 \mathrm{~Hz}$ $C_{m i}=15.88 p F \quad C_{m o}=5.35 p F \quad C_{i}=30.88 p F \quad C_{o}=14.35 p F$ $f_{H i}=520.6 \mathrm{KHz} \quad f_{H o}=7.404 \mathrm{MHz} \quad f_{H}=520.6 \mathrm{KHz}$
11. Explain how high frequency response of single stage RC coupled JFET CS type amplifier can be determined.
12. For the JFET amplifier shown in figure 20. Given: $I_{D S S}=6 m A, V_{P}=-6 V, r_{d}=\infty$, $C_{d s}=1 p F, C_{g s}=6 p F, C_{g d}=4 p F, C_{w i}=3 p F, C_{w o}=5 p F$
a) Determine low cutoff frequency
b) Determine high cutoff frequency
c) Determine gain bandwidth product

Figure 20: Question 12

$$
\begin{aligned}
& \text { Answers: } V_{G S Q}=-2.52 \mathrm{~V} \quad I_{D Q}=2.1 \mathrm{~mA} \quad g_{m}=1.16 \mathrm{~mA} / \mathrm{V} \quad A_{V M I D}=-2 \\
& f_{L C i n}=1.59 \mathrm{~Hz} \quad f_{L C o}=4.91 \mathrm{~Hz} \quad \quad_{L C s}=32.04 \mathrm{~Hz} \quad f_{L}=32.04 \mathrm{~Hz} \\
& C_{m i}=12 p F \quad C_{m o}=6 p F \quad C_{i}=21 p F \quad C_{o}=12 p F \\
& f_{H i}=7.586 \mathrm{MHz} \quad f_{H o}=7.847 \mathrm{MHz} \quad f_{H}=7.586 \mathrm{MHz} \\
& \text { Bandwidth }=7.585 \mathrm{MHz} \quad G B P=15.17 \mathrm{MHz}
\end{aligned}
$$

13. For the JFET amplifier shown in figure 21. Given: $I_{D S S}=8 m A, V_{P}=-4 V$
a) Find the lower cut-off frequency

Figure 21: Question 13

Answers: $V_{G S Q}=-1.54 V \quad I_{D Q}=3.026 m A \quad g_{m}=2.46 \mathrm{~mA} / V \quad f_{L C C 1}=1.576 \mathrm{~Hz}$ $f_{L C C 2}=2.18 H z \quad f_{L C S}=7.03 H z \quad f_{L}=7.03 H z$
14. For the given circuit shown in figure 22 , plot $\mathrm{DC} / \mathrm{AC}$ load line and find the operating $\quad[\mathbf{1 0}]$ point

Figure 22: Question 14

Answers: $V_{G S Q}=-1.439 \mathrm{~V} \quad I_{D Q}=1.44 m A$
15. A Common source amplifier circuit using N Channel JFET is given below in figure 23. The transistor parameters are $I_{D S S}=8 m A$ and $V_{P}=-4 V$
a) Determine the value of mid band gain in dB
b) Lower cut-off frequency
c) Repeat part a) and b) with $r_{d}=50 \mathrm{~K} \Omega$
d) Sketch the frequency response for results obtained in part a) and b)
e) What is the effect on the gain of the circuit if $R_{s i g}$ is zero.
f) What is the effect on the gain of the circuit if R_{L} is not connected

Figure 23: Question 15
16. For the circuit given below in figure 24 , find 3 dB frequencies and bandwidth

Figure 24: Question 16

