K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING
2UXC402: ELECTRONIC CIRCUITS ANALYSIS AND DESIGN SEM IV SET OF QUESTIONS
$7^{\text {th }}$ January, 2020

1. Assume any suitable data if necessary
2. Read the questions carefully before attempting

* MODULE 2.1

Analysis: DC \& AC analysis of cascade, cascode amplifier and Darlington pair

1. Explain the need of multistage amplifiers
2. Explain the effect of cascading two or more stages on the following
a) Voltage gain
b) Lower cut-off frequency
c) Higher cut-off frequency
d) Gain Bandwidth product
3. Explain various coupling mechanisms used in multistage amplifiers
4. Compare RC coupling and Direct coupling mechanism (any 5 distinct points)
5. Name the various types of Multi-stage amplifiers
6. Draw the following for $\mathrm{CE}-\mathrm{CE}$ RC coupled BJT amplifier
a) Circuit diagram
b) Mid-frequency equivalent circuit
7. Derive the expression of overall voltage gain, input impedance and output impedance for a CE-CE RC coupled BJT amplifier
8. A two stage circuit is shown in Figure 1. Given $\beta_{1}=\beta_{2}=220, V_{B E 1}=V_{B E 2}=0.7 \mathrm{~V}$
a) Calculate input impedance of the circuit
b) Calculate output impedance of the circuit
c) Calculate voltage gain of the circuit

Figure 1: Question 8

Answers: $I_{B Q 1}=I_{B Q 2}=18.89 \mu A \quad I_{C Q 1}=I_{C Q 2}=4.156 \mathrm{~mA} \quad r_{\pi 1}=r_{\pi 2}=1.376 \mathrm{k} \Omega$ $g_{m 1}=g_{m 2}=159.85 m A / V \quad A_{V 1}=-71.78 \quad A_{V 2}=-159.85 \quad A_{V T}=81.19 \mathrm{~dB}$ $Z_{i}=815.16 \Omega \quad Z_{o}=1 k \Omega$
9. Draw the following for CS-CS RC coupled JFET amplifier
a) Circuit diagram
b) Mid-frequency equivalent circuit
10. Derive the expression of overall voltage gain, input impedance and output impedance for a CS-CS RC coupled JFET amplifier
11. A two stage RC coupled circuit is shown in Figure 2. Given $I_{D S S 1}=I_{D S S 2}=7 m A$, [10] $V_{P 1}=V_{P 2}=-2.5 V$ and $r_{d 1}=r_{d 2}=50 k \Omega$
a) Calculate input impedance of the circuit
b) Calculate output impedance of the circuit
c) Calculate mid band voltage gain of the circuit

Figure 2: Question 11

$$
\begin{aligned}
& \text { Answers: } I_{D Q 1}=I_{D Q 2}=1 m A \quad V_{G S Q 1}=V_{G S Q 2}=-1.556 V \quad Z_{i}=1 M \Omega \\
& Z_{o}=5.036 k \Omega \quad g_{m 1}=g_{m 2}=2.11 m A / V \quad A_{V 1}=-10.57 \quad A_{V 2}=-10.62 \\
& A_{V T}=112.25
\end{aligned}
$$

12. Draw the following for CS-CS RC coupled E-MOSFET amplifier
a) Circuit diagram
b) Mid-frequency equivalent circuit
13. Derive the expression of overall voltage gain, input impedance and output impedance [10] for a CS-CS RC coupled E-MOSFET amplifier
14. Draw the following for $\mathrm{CS}-\mathrm{CE}$ two stage RC coupled cascade amplifier
a) Circuit diagram
b) Mid-frequency equivalent circuit
15. Derive the expression of overall voltage gain, input impedance and output impedance for a CS-CE two stage RC coupled cascade amplifier
16. A two stage RC coupled circuit is shown in Figure 3. JFET parameters are $I_{D S S}=7 \mathrm{~mA}$, $V_{P}=-2.5 \mathrm{~V} \& r_{d}=50 \mathrm{k} \Omega$ and BJT parameters are $\beta=220, V_{B E}=0.7 \mathrm{~V}$
a) Calculate input impedance of the circuit
b) Calculate output impedance of the circuit
c) Calculate output voltage for the circuit

Figure 3: Question 16

Answers: $I_{D Q}=1.74 m A \quad V_{G S Q}=-1.253 V \quad g_{m 1}=2.793 m A / V \quad I_{B Q}=19.75 \mu \mathrm{~A}$ $I_{C Q}=4.345 m A \quad g_{m 2}=167.11 m A / V \quad r_{\pi}=1.32 k \Omega \quad Z_{i}=2.2 M \Omega \quad Z_{o}=1 k \Omega$ $A_{V 1}=-1.874 \quad A_{V 2}=-167.11 \quad A_{V T}=313.16 \quad V_{\text {out }}=6.263 \mathrm{~V}$
17. Write short note on Cascode Amplifier
18. Draw the following for $\mathrm{CE}-\mathrm{CB}$ two stage direct coupled cascode amplifier
a) Circuit diagram
b) DC equivalent circuit
b) Mid-frequency equivalent circuit
19. Derive the expression of overall voltage gain, input impedance, output impedance \& current gain for CE-CB two stage direct coupled cascode amplifier
20. A two stage circuit is shown in Figure 4. It's BJT parameters are $\beta_{1}=\beta_{1}=150$, $V_{B E 1}=V_{B E 2}=0.7 \mathrm{~V}$
a) Calculate the DC parameters of the circuits i.e $V_{B 1}, V_{B 2}, V_{E 1}, I_{E 1}, I_{C 1}, I_{C 2}$, $I_{E 2}, V_{C 1}, V_{C 2}, V_{E 2}, V_{C E 1} \& V_{C E 2}$
b) Calculate input impedance of the circuit
c) Calculate output impedance of the circuit
d) Calculate voltage gain for the circuit

Figure 4: Question 20

$$
\begin{aligned}
& \text { Answers: } V_{B 1}=4.4318 \mathrm{~V} \quad V_{B 2}=11.477 V \quad V_{E 1}=3.73 \mathrm{~V} \quad I_{E 1}=3.73 \mathrm{~mA} \\
& I_{C 1}=3.73 \mathrm{~mA} \quad I_{C 2}=3.73 \mathrm{~mA} \quad I_{E 2}=3.73 \mathrm{~mA} \quad V_{C 1}=10.777 \mathrm{~V} \quad V_{C 2}=14.4 \mathrm{~V} \\
& V_{E 2}=10.777 V \quad V_{C E 1}=7.045 V \quad V_{C E 2}=3.625 \mathrm{~V} \quad g_{m 1}=g_{m 2}=143.53 \mathrm{~mA} / \mathrm{V} \\
& r_{\pi 1}=r_{\pi 2}=1.045 k \Omega \quad Z_{i}=727.458 \Omega \\
& A_{V 2}=186.59 \quad Z_{o}=1.3 \mathrm{k} \Omega \\
& A_{V T}=-185.34
\end{aligned}
$$

22. A two stage circuit is shown in Figure 5. It's BJT parameters are $\beta_{1}=\beta_{1}=200$, [10] $V_{B E 1}=V_{B E 2}=0.7 \mathrm{~V}$
a) Calculate the DC parameters of the circuits i.e $V_{B 1}, V_{B 2}, V_{E 1}, I_{E 1}, I_{C 1}, I_{C 2}$, $I_{E 2}, V_{C 1}, V_{C 2}, V_{E 2}, V_{C E 1} \& V_{C E 2}$
b) Calculate input impedance of the circuit
c) Calculate output impedance of the circuit
d) Calculate voltage gain for the circuit

Figure 5: Question 22

$$
\begin{aligned}
& \text { Answers: } V_{B 1}=2.44 V \quad V_{B 2}=7.32 V \quad V_{E 1}=1.74 V \quad I_{E 1}=1.45 m A \\
& I_{C 1}=1.45 m A \quad I_{C 2}=1.45 m A \quad I_{E 2}=1.45 m A \quad V_{C 1}=6.62 V \quad V_{C 2}=17.18 V \\
& V_{E 2}=6.62 V \quad V_{C E 1}=4.88 V \quad V_{C E 2}=10.56 V \quad g_{m 1}=g_{m 2}=55.77 m A / V \\
& r_{\pi 1}=r_{\pi 2}=3.586 k \Omega \quad Z_{i}=2.476 \mathrm{k} \Omega \quad Z_{o}=824.56 \Omega \quad A_{V 1}=-0.9949 \\
& A_{V 2}=45.98 \quad A_{V T}=-45.75
\end{aligned}
$$

23. Draw the following for CS-CG two stage direct coupled cascode amplifier
a) Circuit diagram, DC equivalent circuit \& Mid-frequency equivalent circuit
24. Derive the expression of overall voltage gain, input impedance \& output impedance for CS-CG two stage direct coupled cascode amplifier
25. A two stage circuit is shown in Figure 6. It's E-MOSFET parameters are $k_{n 1}=k_{n 2}=0.8 m A / V^{2} \& V_{T N 1}=V_{T N 2}=0.8 \mathrm{~V}$
a) Calculate the DC parameters of the circuits i.e $V_{G 1}, V_{G 2}, V_{G S 1}, I_{D 1}, I_{D 2}$, $V_{D 2}, V_{S 1}, V_{S 2}, V_{D S 2}, V_{D 1}, V_{D S 1} \& V_{G S 2}$
b) Calculate input impedance of the circuit
c) Calculate output impedance of the circuit
d) Calculate voltage gain for the circuit

Figure 6: Question 25

$$
\begin{aligned}
& \text { Answers: } V_{G 1}=1.588 \mathrm{~V} \quad V_{G 2}=4.76 \mathrm{~V} \quad V_{G S 1}=1.348 \mathrm{~V} \quad I_{D 1}=0.24 \mathrm{~mA} \\
& I_{D 2}=0.24 m A \quad V_{D 2}=17.2 \mathrm{~V} \quad V_{S 1}=0.24 \mathrm{~V} \quad V_{S 2}=3.416 \mathrm{~V} \quad V_{D S 2}=13.78 \mathrm{~V} \\
& V_{D 1}=3.416 \mathrm{~V} \quad V_{D S 1}=3.176 \mathrm{~V} \quad V_{G S 2}=1.348 \mathrm{~V} \quad g_{m 1}=g_{m 2}=0.876 \mathrm{~mA} / \mathrm{V} \\
& Z_{i}=8 k \Omega \quad Z_{o}=3.3 k \Omega \quad A_{V 1}=-1 \quad A_{V 2}=2.89 \quad A_{V T}=-2.89
\end{aligned}
$$

26. Draw Darlington pair and show that the current gain of individual transistors are the products of individual transistor current gains
27. Explain various features of Darlington pair
28. Draw circuit of Darlington amplifier in emitter follower configuration and derive the following:
a) Expression for DC output current, input impedance and output impedance
b) Expression for Current gain and voltage gain
29. A two stage circuit is shown in Figure 7. It's BJT parameters are $\beta_{1}=\beta_{1}=100$, $V_{B E 1}=V_{B E 2}=0.7 \mathrm{~V}$. Calculate the Q point, input impedance, output impedance, voltage gain and current gain of the circuit

Figure 7: Question 29

$$
\begin{aligned}
& \text { Answers: } I_{B 1}=0.1889 \mu A \quad I_{C 1}=0.01889 m A \quad I_{E 1}=I_{B 2}=0.01908 m A \\
& I_{C 2}=1.9079 m A \quad I_{E 2}=1.927 m A \quad V_{E 2}=1.927 V \quad V_{C 2}=10 V \quad V_{C E 2}=8.073 V \\
& r_{\pi 1}=137.64 k \Omega \quad r_{\pi 2}=1.363 k \Omega \quad Z_{i}=33.22 k \Omega \quad Z_{o}=29.366 \Omega \quad A_{i 1}=101 \\
& A_{i 2}=101 \quad A_{i T}=32.35 \quad A_{V 1}=0.9868 \quad A_{V 2}=0.9867 \quad A_{V T}=0.9737
\end{aligned}
$$

30. A two stage circuit is shown in Figure 8. It's BJT parameters are $\beta_{1}=\beta_{1}=20$, [10] $V_{B E 1}=V_{B E 2}=0.6 \mathrm{~V}$.
a) Determine all node voltages and terminal currents under DC analysis
b) Determine overall voltage gain of the circuit

Figure 8: Question 30

Answers:
Node currents: $I_{B 1}=229.27 \mu A \quad I_{C 1}=4.585 m A \quad I_{E 1}=4.81 m A \quad I_{B 2}=191.095 \mu A$ $I_{C 2}=3.822 m A \quad I_{E 2}=4.013 m A$
Node voltages: $V_{B 1}=5.414 V \quad V_{E 1}=V_{B 2}=4.613 V \quad V_{E 2}=4.013 \mathrm{~V} \quad V_{C 2}=22.356 \mathrm{~V}$
$V_{C 1}=30 \mathrm{~V}$
Small signal parameters: $r_{\pi 1}=113.41 \Omega \quad r_{\pi 2}=136.05 \Omega \quad g_{m 1}=176.35 \mathrm{~mA} / \mathrm{V}$ $g_{m 2}=147 m A / V$
Voltage gain: $A_{V 1}=0.9473 \quad A_{V 2}=-1.8925 \quad A_{V T}=-1.7927$
31. A two stage circuit is shown in Figure 9. It's BJT parameters are $\beta_{1}=\beta_{1}=100$, [10] $V_{B E 1}=V_{B E 2}=0.7 \mathrm{~V}$.
a) Determine all node voltages and terminal currents under DC analysis
b) Determine overall voltage gain of the circuit

Figure 9: Question 31

Answers:
Node currents: $I_{B 1}=12.785 \mu A \quad I_{C 1}=1.2785 m A \quad I_{E 1}=1.29 m A \quad I_{B 2}=27.47 \mu A$ $I_{C 2}=2.743 m A \quad I_{E 2}=2.775 m A$
Node voltages: $V_{B 1}=4.573 \mathrm{~V} \quad V_{C 1}=V_{B 2}=8.75 \mathrm{~V} \quad V_{E 2}=9.45 \mathrm{~V} \quad V_{C 2}=7.4 \mathrm{~V}$
$V_{E 1}=3.873 \mathrm{~V}$
Small signal parameters: $r_{\pi 1}=2.033 k \Omega \quad r_{\pi 2}=947.867 \Omega$
Voltage gain: $A_{V 1}=-1.639 \quad A_{V 2}=0.985 \quad A_{V T}=-1.614$
32. A three stage RC coupled amplifier shown in figure 10 uses FET with following parameters: $g_{m}=26 \mathrm{~mA} / V, r_{d}=7.7 \mathrm{~K} \Omega, R_{D}=10 k \Omega, R_{G}=100 k \Omega, C_{C}=0.005 \mu F$. The total shunting capacitance C_{P} per stage is 100 pF . Find the overall midband voltage gain in decibels, and overall F_{H} and F_{L} for the three stages. Kindly note that C_{C} is coupling capacitor between two stages and C_{P} includes miller and parasitic capacitance.

Figure 10: Question 32

Answers: $A_{V M I D}=-108.39 \quad$ Overall $A_{V M I D}=122.09 d B \quad f_{L}=305.04 \mathrm{~Hz}$ Overall $f_{L}=598.3 \mathrm{~Hz} \quad f_{H}=381.76 \mathrm{KHz} \quad$ Overall $f_{H}=194.67 \mathrm{KHz}$

MODULE 2.2

Design of Cascade amplifiers

33. Design a two stage RC coupled cascade amplifier for following specifications $A_{V} \geq 1600$ $V_{O R M S}=2 V, S \leq 8, f_{L} \geq 15 \mathrm{~Hz}$. Use transistor BC 147A from data-sheet
34. Design a two stage RC coupled cascade amplifier to meet the following specifications $A_{V} \geq 120, V_{O R M S}=3 V, I_{D S Q}=1 m A, R_{i} \geq 1 M \Omega$. Select a suitable transistor from data-sheet
35. Design a two stage RC coupled cascade amplifier for following specifications $A_{V} \geq 450$ $V_{C C}=20 V, S \leq 8, R_{i} \geq 1 M \Omega$. Select a suitable transistor from data-sheet

Previous years Exam questions (ESE exam, IA, Mid term test)

1. A two stage RC coupled amplifier circuit shown in figure 11, uses FET with following parameters: $g_{m}=26 \mathrm{~mA} / V, r_{d}=7.7 \mathrm{~K} \Omega, R_{D}=10 k \Omega, R_{G}=100 \mathrm{k} \Omega, C_{C}=0.005 \mu \mathrm{~F}$. The total shunting capacitance C_{P} per stage is $100 p F$. Find the overall midband voltage gain in decibels, and overall F_{H} and F_{L} for the two stages. Kindly note that C_{C} is coupling capacitor between two stages and C_{P} includes miller and parasitic capacitance

Figure 11: Question 1

Answers: $A_{V M I D}=-108.39 \quad$ Overall $A_{V M I D}=81.4 d B \quad f_{L}=305.04 \mathrm{~Hz}$
Overall $f_{L}=473.95 \mathrm{~Hz} \quad f_{H}=381.76 \mathrm{KHz} \quad$ Overall $f_{H}=245.7 \mathrm{KHz}$
2. What is the significance of operating point and load line(DC/AC) in amplifiers. Give procedure to locate operating point of Cascade amplifier using its analysis.
3. Draw neat circuit diagram of Cascode amplifier. Derive expression for its $A_{V}, Z_{i} \& Z_{o}$
4. Design a two stage CE-CE RC coupled amplifier having overall gain of 6000 , lower cut-off frequency of 40 Hz and output voltage as 2.5 V (peak). Use transistor BC 147A
5. State and explain Darlington amplifier. Derive expressions for voltage gain, input and output impedance. State it's application
6. State the need of multistage amplifiers. Draw circuit diagram of two stage CE-CE BJT
7. For the circuit shown in figure 12. Determine $V_{B 1}, I_{C 1}, A_{V}, Z_{i n} \& Z_{o}$

Figure 12: Question 7

$$
\begin{array}{llll}
\text { Answers: } V_{B 1}=6.4 \mathrm{~V} & V_{B 2}=9.6 \mathrm{~V} & V_{E 1}=5.8 \mathrm{~V} & I_{C 1}=I_{E 1}=2.9 \mathrm{~mA} \\
r_{\pi 1}=r_{\pi 2}=896.55 \Omega & g_{m 1}=g_{m 2}=111.538 \mathrm{~mA} / V & Z_{i n}=2.649 \mathrm{k} \Omega & Z_{o}=1.047 \mathrm{k} \Omega \\
A_{V}=-1.017 & & &
\end{array}
$$

8. State advantages of Cascode amplifier and calculate the values of resistances $R_{C}, R_{1} \quad$ [10] and R_{2} for circuit shown in figure 13. Assume $V_{C C}=9 V, R_{3}=18 k \Omega, V_{C 1}=3 V$, [ESE] $V_{C 2}=6 V, I_{C}=1 \mathrm{~mA}, R_{E}=200 \Omega$

Figure 13: Question 8

Answers: $R_{C}=3 k \Omega \quad V_{E 1}=0.2 V \quad V_{B 1}=0.9 V \quad R_{1}+R_{2}=162 k \Omega$
$V_{E 2}=V_{C 1}=3 V \quad V_{B 2}=3.7 V \quad R_{2}=56 k \Omega \quad R_{1}=106 k \Omega$
9. A two stage circuit is shown in figure 14, MOSFET parameters are $V_{T N 1}=V_{T N 2}=5 \mathrm{~V}$, $k_{n 1}=k_{n 2}=0.12 m A / V^{2}, \& \lambda_{1}=\lambda_{2}=0$
a) Determine the Q point for both stages
b) Draw mid-frequency equivalent circuit
c) Calculate $A_{V 1}$ and $A_{V 2}$
d) Calculate $A_{V T}$ in dB
e) Calculate $V_{\text {out }}$ if $V_{s}=20 \mathrm{mV}$
f) Calculate Z_{i} and Z_{o}

Figure 14: Question 9
10. A two stage circuit is shown in figure 15, BJT parameters are $V_{B E 1}=V_{B E 2}=0.7 V, \quad[\mathbf{1 0}]$ $\beta_{1}=250, \beta_{2}=220$
a) Determine the Q point for both stages
b) Draw mid-frequency equivalent circuit
c) Calculate $A_{V 1}$ and $A_{V 2}$
d) Calculate $A_{V T}$ in dB
e) Calculate $V_{\text {out }}$ if $V_{s}=2 m V$
f) Calculate Z_{i} and Z_{o}

Figure 15: Question 10
11. A two stage circuit is shown in figure 16 , BJT parameters are $V_{B E}=0.7 V, \beta=200$, JFET parameters are $I_{D S S}=10 \mathrm{~mA}, V_{P}=-4 V$
a) Determine the Q point for both stages
b) Draw mid-frequency equivalent circuit
c) Calculate $A_{V 1}$ and $A_{V 2}$
d) Calculate $A_{V T}$ in dB
e) Calculate $V_{\text {out }}$ if $V_{s}=1 \mathrm{mV}$
f) Calculate Z_{i} and Z_{o}

Figure 16: Question 11
12. Compare CE-CE and CS-CE cascade amplifier on the basis of
a) Voltage gain
b) Input impedance
c) Bandwidth
d) Output impedance
13. A two stage circuit is shown in figure 17, BJT parameters are $V_{B E 1}=V_{B E 2}=0.7 V, \quad[\mathbf{1 0}]$ $\beta_{1}=\beta_{2}=150$
a) Determine DC bias for each stages
b) Calculate $A_{V 1}$ and $A_{V 2}$
c) Calculate $A_{V T}$ in dB
d) Calculate $V_{\text {out }}$ if $V_{s}=25 \mu \mathrm{~V}$
e) Calculate Z_{i} and Z_{o}

Figure 17: Question 13

