K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING 2UXC402: ELECTRONIC CIRCUITS ANALYSIS AND DESIGN SEM IV SET OF QUESTIONS 7th January, 2020 [MODULE 2]

1. Assume any suitable data if necessary	
2. Read the questions carefully before attempting	

Analysis: DC & AC analysis of cascade, cascode amplifier and Darlington pair	

1. Explain the need of multistage amplifiers	[05]
r	
2. Explain the effect of cascading two or more stages on the following	[10]
a) Voltage gain	
b) Lower cut-off frequency	
c) Higher cut-off frequency	
d) Gain Bandwidth product	
3. Explain various coupling mechanisms used in multistage amplifiers	[05]
4. Compare RC coupling and Direct coupling mechanism (any 5 distinct points)	[05]
5. Name the various types of Multi-stage amplifiers	[05]
6. Draw the following for CE–CE RC coupled BJT amplifier	[05]
a) Circuit diagram	
b) Mid-frequency equivalent circuit	

7. Derive the expression of overall voltage gain, input impedance and output impedance [10] for a CE–CE RC coupled BJT amplifier

- 8. A two stage circuit is shown in Figure 1. Given $\beta_1 = \beta_2 = 220$, $V_{BE1} = V_{BE2} = 0.7V$ [10]
 - a) Calculate input impedance of the circuit
 - b) Calculate output impedance of the circuit
 - c) Calculate voltage gain of the circuit

Figure 1: Question 8

[05]

- 9. Draw the following for CS–CS RC coupled JFET amplifier
 - a) Circuit diagram
 - b) Mid-frequency equivalent circuit
- 10. Derive the expression of overall voltage gain, input impedance and output impedance [10] for a CS-CS RC coupled JFET amplifier

- 11. A two stage RC coupled circuit is shown in Figure 2. Given $I_{DSS1} = I_{DSS2} = 7mA$, [10] $V_{P1} = V_{P2} = -2.5V$ and $r_{d1} = r_{d2} = 50k\Omega$
 - a) Calculate input impedance of the circuit
 - b) Calculate output impedance of the circuit
 - c) Calculate mid band voltage gain of the circuit

Figure 2: Question 11

- 12. Draw the following for CS–CS RC coupled E-MOSFET amplifier
 - a) Circuit diagram
 - b) Mid-frequency equivalent circuit
- 13. Derive the expression of overall voltage gain, input impedance and output impedance [10] for a CS-CS RC coupled E-MOSFET amplifier

[05]

- 14. Draw the following for CS–CE two stage RC coupled cascade amplifier
 - a) Circuit diagram
 - b) Mid-frequency equivalent circuit
- 15. Derive the expression of overall voltage gain, input impedance and output impedance [10] for a CS-CE two stage RC coupled cascade amplifier
- 16. A two stage RC coupled circuit is shown in Figure 3. JFET parameters are $I_{DSS} = 7mA$, [10] $V_P = -2.5V \& r_d = 50k\Omega$ and BJT parameters are $\beta = 220, V_{BE} = 0.7V$
 - a) Calculate input impedance of the circuit
 - b) Calculate output impedance of the circuit
 - c) Calculate output voltage for the circuit

Figure 3: Question 16

17. Write short note on Cascode Amplifier

[10]

[05]

- 18. Draw the following for CE–CB two stage direct coupled cascode amplifier
 - a) Circuit diagram
 - b) DC equivalent circuit
 - b) Mid-frequency equivalent circuit
- 19. Derive the expression of overall voltage gain, input impedance, output impedance & [10] current gain for CE–CB two stage direct coupled cascode amplifier

[05]

- 20. A two stage circuit is shown in Figure 4. It's BJT parameters are $\beta_1 = \beta_1 = 150$, [10] $V_{BE1} = V_{BE2} = 0.7V$
 - a) Calculate the DC parameters of the circuits i.e V_{B1} , V_{B2} , V_{E1} , I_{E1} , I_{C1} , I_{C2} , I_{E2} , V_{C1} , V_{C2} , V_{E2} , V_{CE1} & V_{CE2}
 - b) Calculate input impedance of the circuit
 - c) Calculate output impedance of the circuit
 - d) Calculate voltage gain for the circuit

Figure 4: Question 20

- 21. Justify that cascode amplifier biggest advantage is its high bandwidth.
- 22. A two stage circuit is shown in Figure 5. It's BJT parameters are $\beta_1 = \beta_1 = 200$, [10] $V_{BE1} = V_{BE2} = 0.7V$
 - a) Calculate the DC parameters of the circuits i.e V_{B1} , V_{B2} , V_{E1} , I_{E1} , I_{C1} , I_{C2} , I_{E2} , V_{C1} , V_{C2} , V_{E2} , V_{CE1} & V_{CE2}
 - b) Calculate input impedance of the circuit
 - c) Calculate output impedance of the circuit
 - d) Calculate voltage gain for the circuit

Figure 5: Question 22

- 23. Draw the following for CS-CG two stage direct coupled cascode amplifier [05] a) Circuit diagram, DC equivalent circuit & Mid-frequency equivalent circuit
- 24. Derive the expression of overall voltage gain, input impedance & output impedance for [10] CS-CG two stage direct coupled cascode amplifier
- 25. A two stage circuit is shown in Figure 6. It's E-MOSFET parameters are [10] $k_{n1} = k_{n2} = 0.8mA/V^2 \& V_{TN1} = V_{TN2} = 0.8V$
 - a) Calculate the DC parameters of the circuits i.e V_{G1} , V_{G2} , V_{GS1} , I_{D1} , I_{D2} ,
 - $V_{D2}, V_{S1}, V_{S2}, V_{DS2}, V_{D1}, V_{DS1} \& V_{GS2}$
 - b) Calculate input impedance of the circuit
 - c) Calculate output impedance of the circuit
 - d) Calculate voltage gain for the circuit

Figure 6: Question 25

- 26. Draw Darlington pair and show that the current gain of individual transistors are the [05] products of individual transistor current gains
- 27. Explain various features of Darlington pair
- 28. Draw circuit of Darlington amplifier in emitter follower configuration and derive the [10] following:

[05]

- a) Expression for DC output current, input impedance and output impedance
- b) Expression for Current gain and voltage gain
- 29. A two stage circuit is shown in Figure 7. It's BJT parameters are $\beta_1 = \beta_1 = 100$, [10] $V_{BE1} = V_{BE2} = 0.7V$. Calculate the Q point, input impedance, output impedance, voltage gain and current gain of the circuit

Figure 7: Question 29

 $\begin{array}{ll} Answers: \ I_{B1} = 0.1889 \mu A & I_{C1} = 0.01889 m A & I_{E1} = I_{B2} = 0.01908 m A \\ I_{C2} = 1.9079 m A & I_{E2} = 1.927 m A & V_{E2} = 1.927 V & V_{C2} = 10 V & V_{CE2} = 8.073 V \\ r_{\pi 1} = 137.64 k \Omega & r_{\pi 2} = 1.363 k \Omega & Z_i = 33.22 k \Omega & Z_o = 29.366 \Omega & A_{i1} = 101 \\ A_{i2} = 101 & A_{iT} = 32.35 & A_{V1} = 0.9868 & A_{V2} = 0.9867 & A_{VT} = 0.9737 \end{array}$

- 30. A two stage circuit is shown in Figure 8. It's BJT parameters are $\beta_1 = \beta_1 = 20$, [10] $V_{BE1} = V_{BE2} = 0.6V$.
 - a) Determine all node voltages and terminal currents under DC analysis
 - b) Determine overall voltage gain of the circuit

Figure 8: Question 30

Answers:

Node currents: $I_{B1} = 229.27 \mu A$ $I_{C1} = 4.585 m A$ $I_{E1} = 4.81 m A$ $I_{B2} = 191.095 \mu A$ $I_{C2} = 3.822 m A$ $I_{E2} = 4.013 m A$ Node voltages: $V_{B1} = 5.414 V$ $V_{E1} = V_{B2} = 4.613 V$ $V_{E2} = 4.013 V$ $V_{C2} = 22.356 V$ $V_{C1} = 30 V$ Small signal parameters: $r_{\pi 1} = 113.41 \Omega$ $r_{\pi 2} = 136.05 \Omega$ $g_{m1} = 176.35 m A/V$ $g_{m2} = 147 m A/V$ Voltage gain: $A_{V1} = 0.9473$ $A_{V2} = -1.8925$ $A_{VT} = -1.7927$

- 31. A two stage circuit is shown in Figure 9. It's BJT parameters are $\beta_1 = \beta_1 = 100$, [10] $V_{BE1} = V_{BE2} = 0.7V$.
 - a) Determine all node voltages and terminal currents under DC analysis
 - b) Determine overall voltage gain of the circuit

Figure 9: Question 31

Answers: Node currents: $I_{B1} = 12.785 \mu A$ $I_{C1} = 1.2785 m A$ $I_{E1} = 1.29 m A$ $I_{B2} = 27.47 \mu A$ $I_{C2} = 2.743 m A$ $I_{E2} = 2.775 m A$ Node voltages: $V_{B1} = 4.573 V$ $V_{C1} = V_{B2} = 8.75 V$ $V_{E2} = 9.45 V$ $V_{C2} = 7.4 V$ $V_{E1} = 3.873 V$ Small signal parameters: $r_{\pi 1} = 2.033 k \Omega$ $r_{\pi 2} = 947.867 \Omega$ Voltage gain: $A_{V1} = -1.639$ $A_{V2} = 0.985$ $A_{VT} = -1.614$ 32. A three stage RC coupled amplifier shown in figure 10 uses FET with following parameters: $g_m = 26mA/V$, $r_d = 7.7K\Omega$, $R_D = 10k\Omega$, $R_G = 100k\Omega$, $C_C = 0.005\mu F$. The total shunting capacitance C_P per stage is 100pF. Find the overall midband voltage gain in decibels, and overall F_H and F_L for the three stages. Kindly note that C_C is coupling capacitor between two stages and C_P includes miller and parasitic capacitance.

Figure 10: Question 32

Design of Cascade amplifiers

- 33. Design a two stage RC coupled cascade amplifier for following specifications $A_V \ge 1600$ [20] $V_{ORMS} = 2V, S \le 8, f_L \ge 15Hz$. Use transistor BC 147A from data-sheet
- 34. Design a two stage RC coupled cascade amplifier to meet the following specifications [20] $A_V \ge 120, V_{ORMS} = 3V, I_{DSQ} = 1mA, R_i \ge 1M\Omega$. Select a suitable transistor from data-sheet
- 35. Design a two stage RC coupled cascade amplifier for following specifications $A_V \ge 450$ [20] $V_{CC} = 20V, S \le 8, R_i \ge 1M\Omega$. Select a suitable transistor from data-sheet

Previous years Exam questions (ESE exam, IA, Mid term test)

1. A two stage RC coupled amplifier circuit shown in figure 11, uses FET with following [10] parameters: $g_m = 26mA/V$, $r_d = 7.7K\Omega$, $R_D = 10k\Omega$, $R_G = 100k\Omega$, $C_C = 0.005\mu F$. [ESE] The total shunting capacitance C_P per stage is 100pF. Find the overall midband voltage gain in decibels, and overall F_H and F_L for the two stages. Kindly note that C_C is coupling capacitor between two stages and C_P includes miller and parasitic capacitance

Figure 11: Question 1

Answers: $A_{VMID} = -108.39$ Overall $A_{VMID} = 81.4dB$ $f_L = 305.04Hz$ Overall $f_L = 473.95Hz$ $f_H = 381.76KHz$ Overall $f_H = 245.7KHz$

- 2. What is the significance of operating point and load line(DC/AC) in amplifiers. Give [10] procedure to locate operating point of Cascade amplifier using its analysis. [ESE]
- 3. Draw neat circuit diagram of Cascode amplifier. Derive expression for its $A_V, Z_i \& Z_o$ [10]

[ESE]

- 4. Design a two stage CE-CE RC coupled amplifier having overall gain of 6000, lower [20] cut-off frequency of 40 Hz and output voltage as 2.5 V (peak). Use transistor BC 147A [ESE]
- 5. State and explain Darlington amplifier. Derive expressions for voltage gain, input and [10] output impedance. State it's application [ESE]
- 6. State the need of multistage amplifiers. Draw circuit diagram of two stage CE-CE BJT [10] amplifier and derive expressions for R_i , R_o and A_V [ESE]

7. For the circuit shown in figure 12. Determine V_{B1} , I_{C1} , A_V , Z_{in} & Z_o [10] Given: $\beta 1 = \beta 2 = 100$, $V_{BE1} = V_{BE2} = 0.6V$ [MT]

Figure 12: Question 7

8. State advantages of Cascode amplifier and calculate the values of resistances R_C , R_1 [10] and R_2 for circuit shown in figure 13. Assume $V_{CC} = 9V$, $R_3 = 18k\Omega$, $V_{C1} = 3V$, [ESE] $V_{C2} = 6V$, $I_C = 1mA$, $R_E = 200\Omega$

Figure 13: Question 8

- 9. A two stage circuit is shown in figure 14, MOSFET parameters are $V_{TN1} = V_{TN2} = 5V$, [10] $k_{n1} = k_{n2} = 0.12mA/V^2$, & $\lambda_1 = \lambda_2 = 0$ [IA]
 - a) Determine the Q point for both stages
 - b) Draw mid-frequency equivalent circuit
 - c) Calculate A_{V1} and A_{V2}
 - d) Calculate A_{VT} in dB
 - e) Calculate V_{out} if $V_s = 20mV$
 - f) Calculate Z_i and Z_o

Figure 14: Question 9

- 10. A two stage circuit is shown in figure 15, BJT parameters are $V_{BE1} = V_{BE2} = 0.7V$, [10] $\beta_1 = 250, \beta_2 = 220$ [IA]
 - a) Determine the Q point for both stages
 - b) Draw mid-frequency equivalent circuit
 - c) Calculate A_{V1} and A_{V2}
 - d) Calculate A_{VT} in dB
 - e) Calculate V_{out} if $V_s = 2mV$
 - f) Calculate Z_i and Z_o

Figure 15: Question 10

11. A two stage circuit is shown in figure 16, BJT parameters are $V_{BE} = 0.7V$, $\beta = 200$, [10] JFET parameters are $I_{DSS} = 10mA$, $V_P = -4V$ [IA]

 $[\mathbf{MT}]$

 $[\mathbf{MT}]$

- a) Determine the Q point for both stages
- b) Draw mid-frequency equivalent circuit
- c) Calculate A_{V1} and A_{V2}
- d) Calculate A_{VT} in dB
- e) Calculate V_{out} if $V_s = 1mV$
- f) Calculate Z_i and Z_o

Figure 16: Question 11

12. Compare CE-CE and CS-CE cascade amplifier on the basis of	[05]
---	------

- a) Voltage gain
- b) Input impedance
- c) Bandwidth
- d) Output impedance

- 13. A two stage circuit is shown in figure 17, BJT parameters are $V_{BE1} = V_{BE2} = 0.7V$, [10] $\beta_1 = \beta_2 = 150$ [MT]
 - a) Determine DC bias for each stages
 - b) Calculate A_{V1} and A_{V2}
 - c) Calculate A_{VT} in dB
 - d) Calculate V_{out} if $V_s=25\mu V$
 - e) Calculate Z_i and Z_o

Figure 17: Question 13