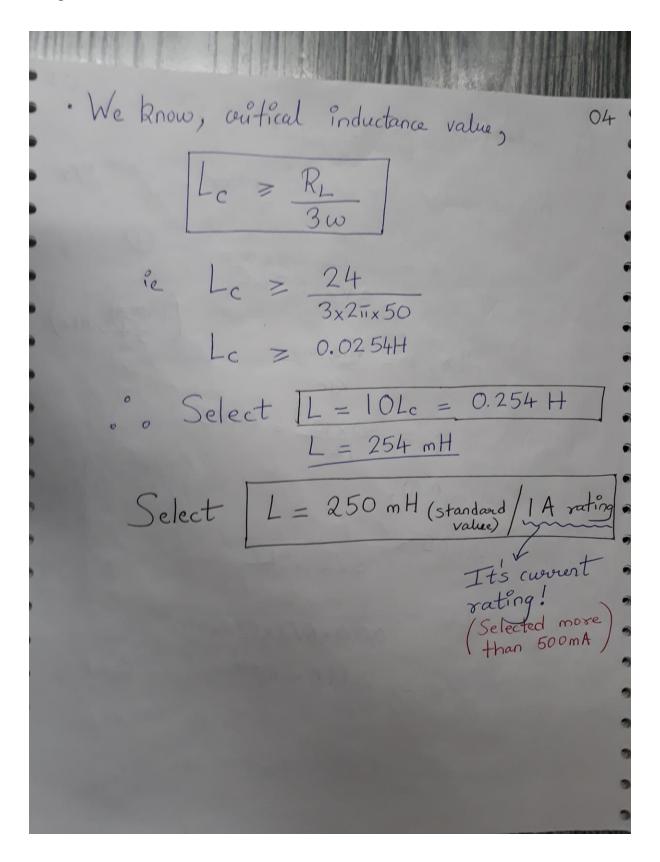

Reference: Electronics Devices and Circuits 1 by Ravish Singh

6.3 Design of full-wave rectifier with LC and pi filter	0110/8/17-
Design a full-wave center tapped ?	rectifier -
to meet the following specifications. Output voltage: 12 V dc	0Hz_]
. Load convert (max): 500mA . Ripple voltage must be less than 60mV The above design should employ	30Vans Q 5
i) L section LC filter	voltage: 2
Solution:- A] [] Given data:	[Input (ac m
Vdc = 12V Idc (0x IL) = 500mA	Assome :-
Vac oms (or Vooms) = 60 mV	2

4) Selection of L and C:-


Ripple factor for an LC filter is given by,

$$8 = \frac{1}{6\sqrt{2}} \frac{1}{\omega^2 LC} - \frac{1}{0}$$
Also,
$$8 = \frac{1}{6\sqrt{2}} \frac{1}{\omega^2 LC} - \frac{1}{0}$$

$$\frac{1}{12} = \frac{1}{12} = 0.005$$

$$\frac{1}{12} = \frac{1}{0.005 \times 6\sqrt{2} \times (211 \times 50)^2}$$

$$LC = \frac{1}{2.388 \times 10^{-4}} - \frac{1}{20}$$

From (2), 05

LC = 2.388 × 10-4

C =
$$\frac{2.388 \times 10^{-4}}{250 \times 10^{-3}} = 956 \mu F$$

Select C = $\frac{1000 \mu F_{\text{Istandard}}}{250 \times 10^{-3}}$

This voltage rating (Selected more) than Vsecortage than Vsecortage (Than Vsecortage)

Selection of RB: (Bleeder resistor)

RB < 3 \(\text{3} \text{L} \)

< 3 \(\text{2} \) \(\text{in} \text{50} \text{250} \text{ 10-3} \)

< 235.6 \(\text{2} \)

Power rating: \(\text{RB} \(\text{=} \) \(\text{20} \(\text{=} \) \(\text{0.65} \text{W} \)

Select \(\text{RB} \(\text{=} \) \(\text{200} \)

Select \(\text{RB} \(\text{=} \) \(\text{200} \)

Select \(\text{RB} \(\text{=} \) \(\text{200} \)

Select \(\text{RB} \(\text{=} \) \(\text{200} \)

Select \(\text{RB} \(\text{=} \) \(\text{200} \)

Select \(\text{RB} \(\text{=} \) \(\text{200} \)

Select \(\text{RB} \(\text{=} \) \(\text{200} \)

Select \(\text{RB} \(\text{=} \) \(\text{200} \)

Select \(\text{RB} \(\text{=} \) \(\text{200} \)

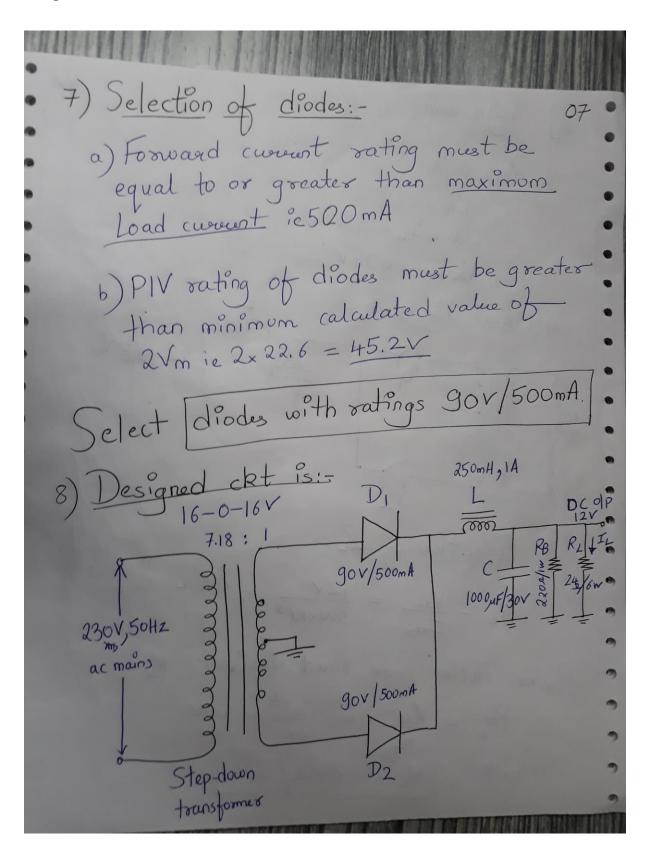
Select \(\text{RB} \(\text{=} \) \(\text{200} \)

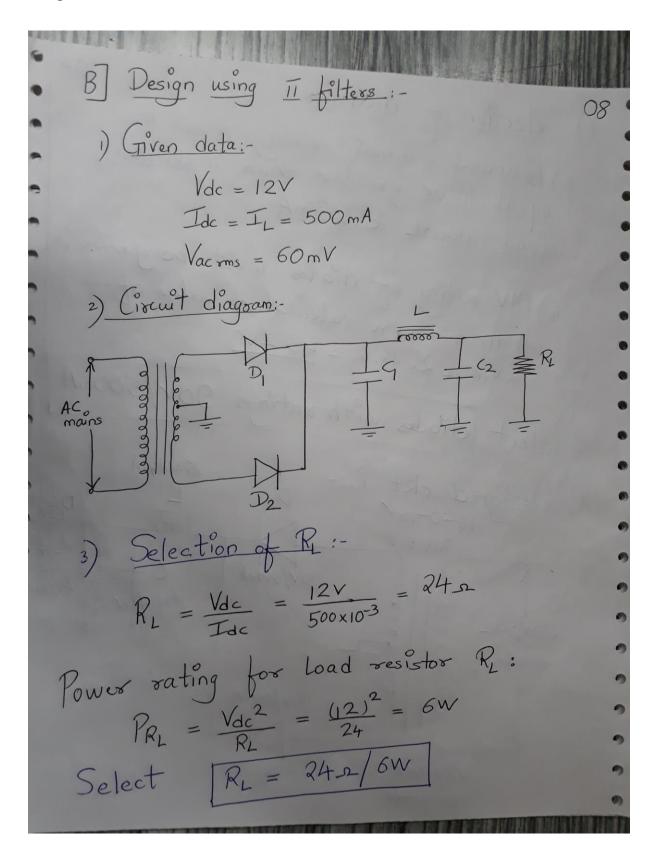
Select \(\text{RB} \(\text{=} \) \(\text{200} \)

Select \(\text{RB} \(\text{=} \) \(\text{200} \)

Select \(\text{RB} \(\text{=} \) \(\text{200} \)

Select \(\text{RB} \(\text{=} \) \(\text{200} \)


Select \(\text{RB} \(\text{=} \) \(\text{200} \)


Select \(\text{RB} \(\text{=} \)

Since, it's a center-tapped transformer, the two secondary will be
$$16-0-16V$$
 Than spormer is First 18:1

The secondary will be $16-0-16V$ Than strong it is secondary will be $16-0-16V$ Than strong it is secondary in the secondary transformer is from ac mains in 230 V 0 50Hz.

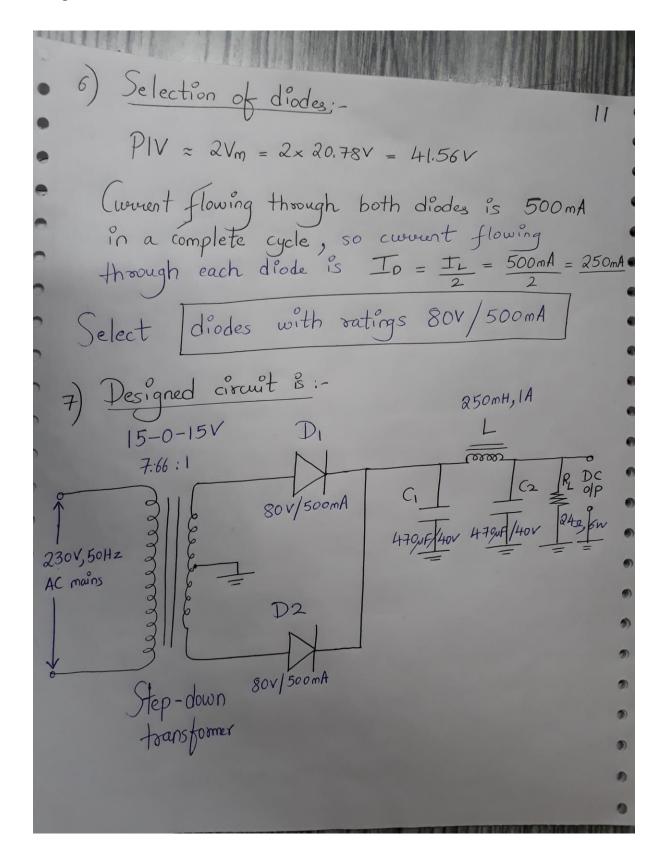
Selecting a transformer with secondary is secondary in the secondary

4) Selection of L and C:-

Ripple factor for a pi filter is,

$$\delta = \frac{1}{4\sqrt{2}} \frac{1}{w^3 L C_1 C_2 R_L}$$

$$\delta = \frac{1}{4\sqrt{2}} \frac{1}{(2\pi x 50)^3 L C_1 C_2 R_L}$$


$$\delta = \frac{1}{4\sqrt{2}} \frac{1}{(2\pi x 50)^3 L C_1 C_2 R_L}$$

$$\delta = \frac{5.7 \times 10^{-5}}{L C_1 C_2 R_L}$$
Now,
$$\delta = \frac{5.7 \times 10^{-5}}{L C_1 C_2 R_L}$$
Assuming
$$L = \frac{60 \text{ mV}}{V \text{dc}} = 0.005$$

$$\frac{12}{V \text{dc}}$$
And let
$$C_1 = C_2 = C$$

$$\frac{1}{600} = \frac{5.7 \times 10^{-9}}{C^2 \times 24 \times 250 \times 10^{-3}}$$

$$C = \frac{436 \, \mu F}{V \text{dc}}$$
Select
$$C_1 = C_2 = \frac{470 \, \mu F_{6140} / 40V}{V \text{dc}}$$

