Wafer Cleaning

- Surface films and doped regions must not be significantly attacked.
- Photoresist strip and particle removal typical
- Room air and process equipment delivered particles
 - Significant elements that cause severe problems in silicon include: organics, metals (Fe, Au, Cu, etc.) and alkali ions (Na, K, etc.)

Example Sensitivity

Example #1: MOS transistor gate threshold shift

MOS
$$V_{TH}$$
 is given by
$$V_{TH} = V_{FB} + 2\phi_f + \frac{\sqrt{2\epsilon_S q N_A(2\phi_f)}}{C_O} + \frac{qQ_M}{C_O}$$
 (1)

 Q_M is the mobile charge density (number of charges per cm²) of Na⁺ and K ⁺ in the gate oxide

If t_{ox} = 10 nm, then a 0.1 volt V_{th} shift can be caused by Q_{M} = 6.5 x 10¹¹ cm⁻² (< 0.1% monolayer or 10 ppm in the oxide).

 Prevented MOS technologies initially from being important commercially!

Example Sensitivity

- Example #2: MOS DRAM
 - Storage of charge based on minimal charge leakage in time.
 - Refresh required to maintain charges after a technology defined period of time.
 - Dominated by Shockley, Reed Hall (SRH) recombination (intermediate impurity related energy levels).
 - σ is the trap cross sectional area, (10⁻¹⁵cm⁻²) v_{th} is the minority carrier thermal velocity (10⁷ cm/sec), and N_t is the density of traps.
 - Deep-level traps (Cu, Fe, Au etc.) Pile up at the surface where the devices are located.

 Refresh time of several msec requires a generation lifetime of

$$\tau_{\rm R} = \frac{1}{\sigma \cdot v_{th} \cdot N_t} \approx 100 \,\mu{\rm sec}$$
 (2)

CHARGE ON MOS CAPACITOR • This requires $N_t \approx 10^{12}$ cm⁻³ or ≈ 0.02 ppb (see text).

Clean Factories - Wafer Fab Facility

- The wafer fabrication area "Clean Rooms" must particle free.
 - Sources of particles
 - Air (normal presence of particles) and Water
 - · Machinery particularly due to friction, metals
 - People 5 to 10 million particles per minute, organic
 - · Supplies brought in to room for use
 - Processing
 - Rooms and People
 - · Clean room limited access, finger wall machine access
 - · Bunny suits, gloves, air showers, covered faces/facemask
 - · Glove box and robots
 - Air handling
 - · Positive air pressure, HEPA filters

- Air quality is measured by the "class" of the facility.
 - Less than X total particles greater than 0.5 um per cubic foot of air.

Factory environment is cleaned by:

- HEPA filters (99.07% eff.)
- Air recirculation (laminar >50 cm/sec)
- · Bunny suits for workers
- · Filtration of chemicals and gases
- Manufacturing protocols

Wafer Cleaning

- Remove particles, films such as photoresist, and any other trace contaminants
- · Distinct processes
 - Silicon wafer clean (frontend processes)
 - Post metalization clean (backend processes)
- Frontend Wafer Cleaning based on RCA process
 - RCA was originally the Radio Corporation of America
 - Werner Kern developed the basic procedure in 1965 while working for RCA.
- The RCA clean involves the following :
 - 1. Removal of the organic contaminants (Organic Clean)
 - 2. Removal of thin oxide layer (Oxide Strip)
 - 3. Removal of ionic contamination (Ionic Clean)

Frequently used Chemicals

Chemical Name	Purpose
Acetone	Wafer Cleaning and Resist removal
Iso Propyl Alcohol	Wafer Cleaning
Methanol	Cleaning
Trichloro Ethylene	III-V wafer cleaning
Acetic Acid	Constituent of HNA for Si/Poly Si etching
Hydrofluoric Acid	Silicon Dioxide, Silicon Nitride etching
Hydrochloric Acid	RCA Cleaning
Phosphoric Acid	Silicon Nitride Etching
Sulphuric Acid	Piranha
Nitric Acid	Constituent of HNA for Si/Poly Si etching
Ammonium Hydroxide	RCA Cleaning
Tetra methyl Ammonium Hydroxide	Anisotropic etching of Si

The RCA Clean

- The first step (called SC-1, where SC stands for Standard Clean) is performed with a 1:1:5 solution of NH₄OH + H₂O2 + H₂O at 70° to 80° C for 10 minutes.
 - This treatment oxidizes organic films and complexes Group IB and IIB metals as well as Au, Ag, Cu, Ni, Zn, Cd, Co, and Cr. The solution dissolves and regrows a thin native oxide layer on the silicon.
- The next step is a short immersion in a 1:50 solution of HF + H2O at 25° C
 - Remove the thin oxide layer and some fraction of ionic contaminants.
- Perform a DI rinse.
- The next step (called SC-2) is performed with a 1:1:6 solution of HCl + H₂O₂ + H₂O at 70° to 80° C for 10 minutes.
 - This treatment removes alkali ions and cations (AL, Fe, Mg) that form NH₄OH insoluble hydroxides in solutions like SC-1. In SC-2 they for soluble complexes. This solution also completes the removal of metal contaminants.
- Perform a DI rinse

Level 2 Contamination Reduction: Wafer Cleaning

(Photo courtesy of Ruth Carranza.)

 RCA clean is "standard process" used to remove organics, heavy metals and alkali ions.

De-Ionized (DI) Water

- · Clean water for silicon processing
- DI Water conductivity example:

 $\begin{array}{lll} DI \ water \ is \ necessary: \ H_2O \leftrightarrow H^+ + OH^- \\ Diffusivity \ of: & H^+ \approx 9.3 \times 10^{-5} cm^2 s^{-1} \\ & of: & OH^- \approx 5.3 \times 10^{-5} cm^2 s^{-1} \\ \end{array} \qquad \begin{array}{ll} with \ \ [H^+] = [OH^-] = 6 \times 10^{-13} cm^{-3} \\ \rightarrow \mu_{H^+} = qD/kT = 3.59 cm^2 V^{-1} s^{-1} \\ \rightarrow \mu_{OH^-} = qD/kT = 2.04 cm^2 V^{-1} s^{-1} \end{array}$

$$\rho = \frac{1}{q([H^+]\mu_{_{H^+}} + [OH^-]\mu_{_{OH^-}})} = 18.5 M\Omega cm$$

Distilled water is typically 10 uS/cm or 0.1 M Ω cm

Gettering

- Removing trace elements from active transistor locations by causing them to combine with defects in the silicon.
 - Active devices cover a very small portion of the silicon volume, typically near one surface.
 - Metals and alkali ions have very high diffusivity.
 - They tend to be easily captured either in regions with mechanical defects or in regions which chemically trap them.
- For the alkali ions, gettering generally uses dielectric layers on the topside (PSG or barrier Si3N4 layers).
- For metal ions, gettering generally uses traps on the wafer backside (extrinsic) or in the wafer bulk (intrinsic).

Level 3 Contamination Reduction: Gettering

 Gettering is used to remove metal ions and alkali ions from device active regions.

- For the alkali ions, gettering generally uses dielectric layers on the topside (PSG or barrier Si₃N₄ layers).
- For metal ions, gettering generally uses traps on the wafer backside or in the wafer bulk.
- Backside = extrinsic gettering.
- Bulk = intrinsic gettering.

Modeling Particle Contamination and Yield

- $\approx 75\%$ of yield loss in modern VLSI fabs is due to particle contamination.
- Yield models depend on information about the distribution of particles.
- Particles on the order of 0.1 0.3 μm are the most troublesome:
 - larger particles precipitate easily
 - smaller ones coagulate into larger particles

 Yields are described by Poisson statistics in the simplest case.

$$Y = \exp^{-A_C D_O}$$
 (3)

where A_C is the critical area and D_O the defect density.

 This model assumes independent randomly distributed defects and often underpredicts yields.

Summary of Key Ideas

- A three-tiered approach is used to minimize contamination in wafer processing.
- Particle control, wafer cleaning and gettering are some of the "nuts and bolts" of chip manufacturing.
- The economic success (i.e. chip yields) of companies manufacturing chips today depends on careful attention to these issues.
- Level 1 control clean factories through air filtration and highly purified chemicals and gases.
- Level 2 control wafer cleaning using basic chemistry to remove unwanted elements from wafer surfaces.
- Level 3 control gettering to collect metal atoms in regions of the wafer far away from active devices.
- The bottom line is chip yield. Since "bad" die are manufactured alongside "good" die, increasing yield leads to better profitability in manufacturing chips.

Acknowledgements

- 1. J.D Plummer, Deal and Griffin, Silicon VLSI Technology Fundamentals, Practice and Modeling.
- 2. Centre of Excellence in Nanoelectronics, IITB
- 3. http://www.cen.iitb.ac.in/cen/safety/chemRoom.php